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Abstract 

In the paper we present a new approach based on application of neural networks to detect SQL 
attacks. SQL attacks are those attacks that take advantage of using SQL statements to be 
performed. The problem of detection of this class of attacks is transformed to time series 
prediction problem. SQL queries are used as a source of events in a protected environment. To 
differentiate between normal SQL queries and those sent by an attacker, we divide SQL statements 
into tokens and pass them to our detection system, which predicts the next token, taking into 
account previously seen tokens. In the learning phase tokens are passed to recurrent neural 
network (RNN) trained by backpropagation through time (BPTT) algorithm. Teaching data are 
shifted by one token forward in time with relation to input. The purpose of the testing phase is to 
predict the next token in the sequence. All experiments were conducted on Jordan and Elman 
networks using data gathered from PHP Nuke portal. The experimental results show that the 
Jordan network outperforms the Elman network predicting correctly queries of the length up to 
ten. 
 

1. Introduction 
Integrity, confidentiality and availability are the main features of computer 

security. A large number of Web applications, especially those deployed for 
companies to e-business purpose must meet these requirements. Such 
applications are written in script languages like PHP embedded in HTML 
allowing to establish connection to databases, retrieving data and putting them in 
WWW site. Besides that all Web contents is often based on the retrieved data, a 
database also stores sensitive user typed data like credit card numbers and 
personal information. Security violations consist in not authorized access and 
modification of data in the database. SQL is one of the languages used to 
manage data in databases. Its statements can be one of sources of events for 
potential attacks. One of the ideas to detect an intruder using SQL statements is 
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to build a profile of normal behaviour and in detection stage compare it with the 
observed events. 

In literature there are some approaches to intrusion detection in Web 
applications. In [1] the authors developed an anomaly-based system that learns 
the profiles of the normal database access performed by web-based applications 
using a number of different models. A profile is a set of models, to which parts 
of SQL statement are fed to in order to train the set of models or to generate an 
anomaly score. During training phase models are built based on training data and 
anomaly score is calculated. For each model, the maximum of anomaly score is 
stored and used to set an anomaly threshold. During the detection phase, for each 
SQL query anomaly score is calculated. If it exceeds the maximum of anomaly 
score evaluated during the training phase, the query is considered to be 
anomalous. Decreasing false positive alerts involves creating models for custom 
data types for each application to which this system is applied. 

Besides that work, there are some other works on detecting attacks on a Web 
server which constitutes a part of infrastructure for Web applications. In [2] 
detection system correlates the server-side programs referenced by clients 
queries with the parameters contained in these queries. It is a similar approach to 
detection to the previous work. The system analyzes HTTP requests and builds a 
data model based on attribute length of requests, attribute character distribution, 
structural inference and attribute order. In a detection phase the built model is 
used for comparing requests of clients. 

In [3] logs of Web server are analyzed to look for security violations. 
However, the proposed system is prone to high rates of false alarm. To decrease 
it, some site-specific available information should be taken into account which is 
not portable. 

In this work we present a new approach to intrusion detection in Web 
application. Rather than building profiles of normal behaviour we focus on a 
sequence of tokens within SQL statements observed during normal use of 
application. Two architectures of RNN are used to encode stream of such SQL 
statements. 

The paper is organized as follows. The next section discusses SQL attacks. In 
section 3 we present two architectures of RNN. Section 4 shows training and 
testing data used for experiments. Next, section 5 contains experimental results. 
Last section summarizes results and shows possible future work. 

 
2. SQL Attacks 

2.1. SQL injection 
SQL injection attack consists in such a manipulation of an application 

communicating with a database, that it allows a user to gain access or to allow it 
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to modify data for which it has not privileges. To perform an attack in most 
cases the Web forms are used to inject part of SQL query. Typing SQL 
keywords and control signs an intruder is able to change the structure of SQL 
query developed by a Web designer. It is possible because parts of SQL 
statements depend on the data typed by a user. If variables used in the SQL 
query are under control of a user, he can modify the SQL query which will cause 
change of its meaning. Consider an example of a poor quality code written in 
PHP presented below. 
 

$connection=mysql_connect(); 
mysql_select_db("test"); 
$user=$HTTP_GET_VARS['username']; 
$pass=$HTTP_GET_VARS['password']; 
$query="select * from users where login='$user' and password='$pass'"; 
$result=mysql_query($query); 
if(mysql_num_rows($result)==1)   echo "authorization successful" 
else    echo "authorization failed"; 
 

The code is responsible for authorizing users. User data typed in a Web form 
are assigned to variables user and pass and then passed to the SQL statement. If 
retrieved data include one row it means that a user filled in the form login and 
password the same as stored in the database. Because data sent by a Web form 
are not analyzed, a user is free to inject any strings. For example, an intruder can 
type: "' or 1=1 --" in the login field leaving the password field empty. The 
structure of SQL query will be changed as presented below. 
 

$query="select * from users where login='' or 1=1 --' and password=''"; 
 

Two dashes comment the following text. The boolean expression 1=1 is 
always true and as a result the user will be logged with privileges of the first user 
stored in the table users. 

 
2.2. Proposed approach 

The way we detect intruders can be easily transformed to a time series 
prediction problem. According to [4] a time series is a sequence of data collected 
from some system by sampling a system property, usually at regular time 
intervals. One of the goals of the analysis of time series is to forecast the next 
value in the sequence based on the values occurred in the past. The problem can 
be more precisely formulated as follows: 
 t-2 t-1 t t+1S ,S ,S S , (1) 
where S is any signal, which is dependent on a solving problem and t is a current 
moment in time. Given St-2, St-1, St, we want to predict St+1. In the problem of 
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detection of SQL attacks, each SQL statement is divided into some signals, 
which we further call tokens. The idea of detecting SQL attacks is based on their 
key feature. The SQL injection attacks involve modification of SQL statement, 
which lead to the fact that the sequence of tokens extracted from a modified 
SQL statement is different from that derived from a legal SQL statement. For 
example, let S mean the recorded SQL statement and T1, T2, T3, T4, T5, tokens of 
this SQL statement. The original sequence of tokens is as follows: 
 1 2 3 4 5T ,T ,T ,T ,T . (2) 

If an intruder performs an attack, the form of SQL statement changes. 
Transformation of the modified statement to tokens results in different tokens 
from those shown in eq. (2). The example of a sequence of tokens related to the 
modified SQL query is as follows: 
 1 2 mod3 mod4 mod5T ,T ,T ,T ,T . (3) 

Tokens number 3, 4, 5 are modified due to an intruder activity. We assume 
that the intrusion detection system trained on the original SQL statements is able 
to predict the next token based on those from the past. If the token T1 occurs, the 
system should predict token T2, next token T3 is expected. In the case of attacks 
token Tmod3 occurs which is different from T3, which means that an attack is 
performed. 

Various techniques have been used to analyze time series [5,6]. Besides 
statistical methods, RNNs have been widely used for that problem. In our study 
presented in this paper we selected two RNNs, the Elman and the Jordan 
networks. 

 
3. Recurrent Neural Networks 

3.1. General issues 
In comparison to feedforward neural networks RNN have feedback 

connections which provide dynamics. When they process information, output 
neurons signal depends on input and activation of neurons in the previous steps 
of teaching RNN. However, RNNs suffer from vanishing gradient [7]. This is 
the main reason why gradient-descent algorithms are not sufficiently powerful to 
map the relationship between the output of RNN and the input that occur much 
earlier in time. In [7] the authors compared the Elman network with the neural 
one based on the NARX model. The model assumes that the output neuron 
signals from n times in back are passed to the hidden layer neurons. This 
partially overcomes the vanishing gradient effect. Some researchers introduce 
modifications to known architectures of RNN to improve the teaching process. 
In [8] the additional self-feedback connection to the context layer neurons of the 
Elman network was added. The experimental results show that the error of 
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network when weight of additional connection is fixed is smaller than that of the 
Elman network. 

 
3.2. RNN architectures 

There are some differences between the Elman and the Jordan networks. The 
first is that the input signal for the context layer neurons comes from different 
layers and the second is that the Jordan network has additional feedback 
connection in the context layer. While in the Elman network the size of the 
context layer is the same as the size of the hidden layer, in the Jordan network 
the size of output layer and context layer is the same. In both networks recurrent 
connections have fixed weight equal to 1.0. The networks were trained by BPTT 
and the following equations are applied for the Elman network: 
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In equations (4)-(11), N, K, M stand for the size of the input, hidden and 
output layers, respectively. x(k) is an input vector, uj(k) and gj(k) are input 
signals provided to the hidden and output layer neurons. Next, vj(k) and yj(k) 
stand for the activations of the neurons in the hidden and output layers at time k, 
respectively. Equation (7) shows how RNN error is computed, while neuron 
errors in the output and hidden layers are evaluated according to (8) and (9), 
respectively. Finally, in the last step values of weights are changed using 
formulas (10) for the output layer and (11) for the hidden layer. 
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3.3. Training 
The training process of RNN is performed as follows. The tokens of the SQL 

statement become input of a network. Activations of all neurons are computed. 
Next, an error of each neuron is calculated. These steps are repeated until the last 
token has been presented to the network. Next, all weights are evaluated and 
activation of the context layer neurons is set to 0. For each input data, teaching 
data are shifted by one token forward in time with relation to the input. Training 
data consist of 276 SQL queries without repetition. The following tokens are 
considered: keywords of SQL language, numbers, strings and combinations of 
these elements. We used the collection of SQL statements to define 54 distinct 
tokens. Each token has a unique index. Table 1 shows the selected tokens and 
their indices. 

 
Table 1. A part of a list of tokens and their indexes 

Token Index 
… … 

WHERE 7 
FROM string 28 

SELECT string 36 
String=number 47 
INSERT INTO 54 

… … 
 
The indices are used for preparation of input data for neural networks. The 

index e.g. of a keyword WHERE is 7. The index 28 points to a combination of 
keyword FROM and any string. The token with index 36 relates to a 
grammatical link between SELECT and any string. Finally, when any string is 
compared to any number within a SQL query, the index of a token equals to 47. 
Figure 1 presents an example of SQL statement, its representation in the form of 
tokens and related binary four inputs of a network. 

SQL statement is encoded as k vectors, where k is the number of tokens 
constituting the statement (see figure 1). The number of neurons on the input 
layer is the same as the number of defined tokens. Networks have 55 neurons in 
the output layer. 54 neurons correspond to each token similarly to the input layer 
but the neuron 55 is included to indicate that just processing input data vector is 
the last within a SQL query. Training data, which are compared to the output of 
the network have the value either equal to 0.1 or 0.9. If a neuron number n in the 
output layer has small value then it means that the next processing token can not 
have index n. On the other hand, if output neuron number n has the value of 0.9, 
then the next token in a sequence should have index n. 
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Fig. 1. Preparation of input data for a neural network: analysis of a statement in terms of tokens 

(a), input neural network data corresponding to the statement (b) 
 
At the beginning, the SQL statement is divided into tokens. The indices of 

tokens are: 36, 28, 7 and 47. Each row is an input vector for RNN. In Figure 1 
the first token that has appeared is 36. As a consequence, in the first step of 
training the output signal of all neurons in the input layer is 0 except neuron 
number 36, which has the value of 1. Next input vectors indicate current indices 
of tokens and the index of a token that has been processed by RNN. The next 
token in a sequence has the index equal to 28. It follows that only neurons 36 
and 28 have the output signal equal to 1. The next index of a token is 7, which 
means that neurons: 36, 28 and 7 send 1 and all remaining neurons send 0. 
Finally, neurons 36, 28, 7, 47 have the activation signal equal to 1. At that 
moment weights of RNN are updated and the next SQL statement is considered. 

 
4. Training and testing data 

We evaluated our system using the data collected from PHP Nuke portal [9]. 
It is a well known application with many holes in older versions. Similarly to [1] 
we installed this portal in version 7.5, which is susceptible to some SQL 
injection attacks. A function of the portal related to executing the SQL 
statements was modified. Besides its original purpose, each executed SQL query 
is written to a log file. Data without attacks were gathered by visiting the Web 
sites using a browser. Each time a Website is downloaded by a browser either a 
link is clicked or filled forms are executed, SQL queries are sent to a database 
and logged to a file simultaneously. The set of all SQL queries was divided into 
12 subsets, each containing SQL statements of different lengths. 80% of each 
data set were used for training and the remaining data were used for examining 
generalization. Teaching data are shifted one time forward in time. The data with 
attacks are the same as reported in [1]. 

 

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 22/11/2024 02:30:15

UM
CS



Jaros aw Skaruz, Franciszek Seredy ski  44

5. Experimental results 
Experimental study was divided into four stages. In the first one, we wanted 

to evaluate the best parameters of both RNNs and learning algorithm. These 
features are: a number of neurons in the hidden layer,  used in momentum, 
activation function of neurons in the hidden and output layers,  that determines 
the extent of weights update. 

For the Elman network all neurons in the hidden layer have the sigmoidal 
activation function while all neurons in the output layer have the tanh function. 
For the Jordan network the tanh function was chosen for the hidden layer and 
the sigmoidal function for the output layer. For each data subset we run RNNs 
10 times for various initial values of weights, specifying a different value of  
and a constant value of . Next, having the best value of  we modified  
parameter. These tests were repeated for all combinations of settings of function 
activation for the hidden and output layer neurons. The number of neurons in the 
hidden layer was also evaluated during experiments – for 58 neurons the RMS 
error was minimal. In 75% cases  does not exceed 0.2 and  value in 87.5% of 
experiments is less than 0.2. In the second phase of the experimental study we 
trained 12 RNNs, one for each training data subset, using the values from the 
first stage. Figure 2 shows how error of both networks changes through epochs. 

 

 
Fig. 2. Neural networks training process for the data subset with 10-length SQL queries 

 
The input for both networks were the subset containing sequences of the 

length equal to 10. From the beginning of the training, the error of the Jordan 
network was much smaller than that of the Elman network. In the next few 
epochs the error of both networks decreased quickly but the Jordan network 
error remained much smaller than the Elman network one. 

 

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 22/11/2024 02:30:15

UM
CS



Recurrent neural networks in the context of SQL attacks 45 

a)   

b)   
Fig. 3. Error and number of wrongly predicted SQL queries for each subset  

of data: Jordan network (a), Elman network (b) 
 
Figure 3 (a) and (b) shows how error of networks changes for all subsets of 

SQL queries. The figure also depicts how well the networks are verified. Here, a 
statement is considered and predicted if for all input vectors, all neurons in the 
output layer have the values according to the training data. All values presented 
in the figure are averaged on 10 runs of RNNs. One can see that nearly for all 
data subsets the Jordan network outperforms the Elman one. Only for data 
subsets 11 and 12 (see Table 2) the error of the Jordan network is greater than 
that of the Elman network. Despite this fact for all data subsets the percentage 
number of wrongly predicted SQL queries for the Jordan network is less than 
that of wrongly predicted SQL statements for the Elman network. The number of 
input vectors depends on the number of SQL queries and the length of SQL 
query. The Jordan network is able to predict all tokens of 10 length statements 
(20.6% false alarms). 

In the third part of experiments we checked if RNNs correctly detect attacks. 
Each experiment was conducted using trained RNNs from the second stage. 
Figure 4a) presents the typical RNN output if an attack is performed. The left 
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column depicts the number of input vector for RNN, while the right column 
shows the number of cases in which the index of the token indicated by the 
network output is different from that of the next processed by RNN token. It is 
common for each network, that nearly each output vector of a network has a few 
errors. This phenomenon is present for all attacks used in this work. Based on 
that observation, a decision about good or bad verification and generalization of 
a network can be taken in the correlation with a form of network output against 
attacks. Figure 4b) shows RNN output for SQL statements derived from the 
training set and that, which was not present in the training set. The description of 
figure 4b) is similar to that of figure 4a). The second column relates to the case if 
the SQL query was in the training set and the third column concerns the SQL 
query, which was not in the training set. 

 

   
a)                                                                   b) 

Fig. 4. RNN output for an attack (a), RNN output for known and unknown SQL statement 
 
The number of errors during verification and generalization is much smaller 

than that when an attack is processed by RNN. Moreover, there are also more 
output vectors free of errors. An easily noticeable difference between an attack 
and a normal activity allows us to re-evaluate the obtained results presented in 
Figure 4. To distinguish between an attack and a legitimate SQL statement we 
define the following rule for the Jordan network: an attack occurred if the 
average number of errors for each output vector is not less than 2.0 and 80% of 
output vectors include any error. When the Elman network is used, the threshold 
equals to 1.6 and the percentage of output vectors possessing errors equals to 
90%. Applying these rules ensures that all attacks are detected by both RNN. 
Table 2 presents the percentage number of SQL statements wrongly predicted 
during verification and generalization if the results were processed by the rules. 
The ranges 2-4, 13-14, 15-16 and 17-20 of the data subset (see Table 2) mean 
that these subsets include SQL queries of the lengths between 2-4, 13-14, 15-16, 
17-20. All remaining subsets contain fixed length statements. 
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Table 2. Results of verification and generalization of Elman and Jordan networks 

Data subset Elman ver Elman gen Jordan ver Jordan gen 
2-4 0 0 0 0 
5 0 1.4 0 0 
6 0 24.2 0 12.8 
7 0 15.7 0 1.4 
8 0 5 0 1.6 
9 0 3.33 0 0 
10 0 2.5 0 0 
11 0 10 0 13.33 
12 0 0 0 6.66 
13-14 0 0 0 0 
15-16 0 3.33 0 3.33 
17-20 0 40 0 13.33 

 
For most cases the Jordan network outperforms the Elman network. Only for 

the data subsets containing statements made from 11 and 12 tokens, the Elman 
network is a little better than the Jordan network. The important outcome of 
defined rules is that both RNNs thought all statements and only a few legitimate 
statements, which were not in the training set were detected as attacks. 

 
Conclusions 

In the paper we have presented a new approach to detecting SQL-based 
attacks. The problem of detection was transformed to the time series prediction 
problem and two RNNs were examined to show their potential use for such a 
class of attacks. Profound analysis of the experimental results leads to the 
definition of rules used for distinguishing between an attack and a legitimate 
statement. When these rules are applied, both networks are completely trained 
for all SQL queries included in all the training subsets. Accuracy of the results 
very strongly depends on the rules. The advisable part of experimental study is 
to apply the defined rules to the other data set, which can confirm efficiency of 
the proposed approach to detecting SQL attacks. 
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