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Abstract 

We present fast evaluating and differentiating algorithms for the Hermite interpolating 
polynomials with the knots of multiplicity 2, which are generated dynamically in a field 

, ,K K  by the recurrent formula of the form 

 1 01,2,.., 1;i ix x i n x . 
As in the case of Lagrange-Newton interpolating algorithms, the running time of these 

algorithms is C n O n  base operations from the field K, where logC n O n n  denotes 
the time needed to compute the wrapped convolution in Kn.  
 

1. Introduction and preliminaries 
Let , ,K K  be a field and let ( 0,1,.., 1)ix i n  be n  pairwise distinct 

points in the field K. Additionally, let the values  
 , 0,1,..., 1i iy z K i n  
be given. Then there exists [1] a unique polynomial 

 
1 1

0 0

n n

i i i i
i i

p x y c x z d x  (1) 

in the space 2 1[ ]nK x  of all polynomials of degree less than 2n, which is 
determined by the following Hermite interpolating conditions  
 i ip x y  and ' i ip x z 0,1,..., 1i n . (2) 

Moreover, the basic polynomials ci(x) and di(x) are given by the following 
formulae 
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d x x x l x i n
  (3) 

with 
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In numerical computations [1,2], the Newton – Hermite interpolating formula  

 
11

2
2 2 1

0 0

kn

k k k v
k

p x f f x x x x  (4) 

is preferred, where the generalized divided differences fi (i = 0,1,…,2n – 1) are 
computed by the usual recurrent formulae, which requires O(n2) base operations 
from the field K. A faster algorithm is announced in Section 3 without proofs. 
 

2. Fast evaluation and differentiation of polynomials 
Let xi (i = 0,1,…,n – 1) be n  pairwise distinct points from the field K 

generated dynamically by the following recurrent formula  
 01 ;1,..,2,1 xnixx ii , (5) 
where   0, ,   are fixed in the field K. In this case, it is possible to present a 
fast algorithm for computation of values 
    0,1,..., 1i iy p x i n  
and derivatives 
 '     0,1,..., 1i iz p x i n  
of Hermite interpolating polynomial 

 
11

2

0 0

kn

k k k v
k

p x g h x x x x  (6)
 

where coefficients gk and hk (k = 0,1,…,n – 1) are given. Of course, these 
coefficients are generalized divided differences 

 0 0 1 1

0 0 1 1

, ,..., , , ,

, ,..., , , , 0,1,.., 1
k k k k

k k k k k

g p x x x x x

h p x x x x x x k n
 

of the polynomial p(x). 
Indeed, one can substitute xi into formula (6) and differentiate (6) at x = xi to 

get  

 
1 11

2 2

0 00 0

k ki i

i k i v k i k i v
k k

y g x x h x x x x  (7) 
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and  

 

1 1 11
2

0 00 0 0

1 11 1

0 00 0

2

2 .

k i ii i

i k i v i i v i
k v

v

k ki k

k k i k i v i
k v

v

z h x x g x x x x

g h x x x x x x

 (8) 

Next we rewrite formula (5) in the form 
 1 2 ... 1i i i

ix . (9) 

By inserting xi into formulae (7) and (8) we obtain  

 
2 21

1
0 0

i i
k i k i

i k k k i k
i k i kk k

q p q py g h r t
p p

 

and 

 

2 1

10 0

21 1 1

1
1 10 0 0

12

1 1 1  2 ,

i i
k i

i k i i
i k ik

i i i k
k i

k k k i k
i k i k i kk

q pz h q p
p r t

q pg h r t
p r t r r t

 

where 

 ,
1

e     ,j
jr      1 1j

jt e , (10) 

 
1

0

j

jq , 
1

1

0

1
j

jp e   0,1,..., 1j n . 

In these formulae, it is assumed that products are equal to 1 and sums are 
equal to 0  whenever their upper indices are smaller than the lower ones. As in 
the Lagrange-Newton interpolating algorithm [3], a computation of these 
formulae uses only the following six different vector operations in Kn:  

– coordinatewise vector addition, subtraction, multiplication, division and 
multiplication by scalars, 

– wrapped convolution defined as 
 0 1 1, ,.., na b c c c ,  
where 
 0 1 1, ,..., na a a a , 0 1 1, ,..., nb b b b   
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and 

 
0

0,1,..., 1
i

i k i k
k

c a b i n .  

Indeed, if we denote  
 1

0
n

ig g , 1
0
n

ih f , 1
02 n

i i id p q w ,  

 1
0
n

iy y , 1
0
n

iz z , 1
0
n

ir r , 1
0
n

it t , (11) 

 1
0
n

ip p , 1
0
n

iq q , 1
0
n

iw w ,  

 1
01 nj , 

12
0

n
iv q , 

12
0

n
iu p   

then one can get 
 w j r j t  
and  
 * * * *y g v j u h r v t u u  

 
* 2* * * * *

 2* * * * * .

z h v j u w g v u h r v t u

g v r w u h v t w u u d
 

Now we present the algorithm to compute the required values and derivatives. 
It uses two classes KType and KTypeVector, which should make it possible 
to perform operations in K and Kn. 
 

Algorithm 1. Polynomial evaluation and differentiation at knots 
 1 01,2,..., 1;i ix ax b i n x c  

Input: A vectors 0 1 1, ,..., ng g g g , 0 1 1, ,..., n
nh h h h  and three scalars 

0 ,   and  in a field K. 
Output: nzy, . 
1. Set /(1 )e c b a , 0 1p , 0 1q , 0 1r  and 0 0v . 
2. For k from 1 to n – 1 do the following: 

2.1. arr kk 1 , ert kk 1 , 
2.2. 1 1k k kp p r , 1 1k k kq q t . 

3. Set 1 1 1n nt r a e . 
4. Compute w j r j t , 2p p p , v q q , 

gv g v , hrv hv r , tu t u , 
ju j u , 2d p q w . 

5. Compute .y gv ju hrv tu u  
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6. Compute  
2

2 .

z hv ju w gv u hrv tu

gv r w u hv tu w u
 

7. Return y, z. 
 

Since the wrapped convolutions  
 ,conv p q p q , 
with 
 0 1 1, ,..., np p p p  and 0 1 1, ,..., nq q q q , 
can be computed by an algorithm having a running time of O(nlogn) base field 
operations in K [4], it follows that computation of values and derivates requires 
only O(nlogn). 
 

3. Fast computation of generalized divided differences 
For the completeness, we include also a very short description of the inverse 

algorithm to Algorithm 1. Since the generalized divided differences f2k+1 
(k = 0,1,…,n – 1) are coefficients at x2k+1 [1] in Hermite polynomials of degree 
2k + 1 determined by the interpolating conditions 
 i is x y  and ' i is x z  0,1,...,i k , 
it follows that  

 

1

0,
2 1

2 20

0, 0,

2
.

k

j jk
j j

k k k
j

j j v
j j

y x x
z

f
x x x x

 (12) 

On the other hand, the generalized divided differences f2k (k = 0,1,…,n – 1) 
are coefficients at x2k [1] of  Hermite polynomials of degree 2k determined by 
the interpolating conditions 
 i iw x y , ' i iw x z   0,1,..., 1i k  and k kw x y . 
Hence we get 

1
1 1

0, 0,
2 1 1

0

0, 0, 0, 0,

1

1 1
20

0, 0, 0

.

k k

j jk
j j

k jk k k k
j

j j j j
j j j j

k
j k

k k k
j

j j k
j j

x x x x

f y

x x x x x x x x

z y

x x x x x x

 (13) 
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These formulae can be used to derive a O(nlogn) – algorithm to compute 
generalized divided differences in the case when the interpolating knots are 
generated by formula (9). Now we present the algorithm to compute the required 
generalized divided differences in the Hermite interpolating formula (2). It uses 
two classes KType and KTypeVector, which make it possible to perform 
operations in K and Kn nK . First we perform initial computation preparing to get 
generalized divided differences. 
 
Algorithm 2. Computation of generalized divided differences with respect to 
knots 
 1 01,2,..., 1;i ix ax b i n x c  
of multiplicity 2. 
Input: A vectors 0 1 1, ,..., ny y y y , 0 1 1, ,..., n

nz z z z  and three scalars 
0 ,  and  in a field K. 

Output: , ng h . 
1. Set / 1e c b a , 0 1p , 0 1q , 0 1r  and 0 0v . 
2. For k from 1 to n – 1 do the following: 

2.1. 1k kr r a , 1 1k kt t e , 1 1k k kq q t . 
2.2. 1 1k k kp p r  1 11k k kv v t . 

3. Set 1 1 1n nt r a e . 
4. Compute w j r j t , 2p p p , 2q q q , 
 2r r r , 2 2d y p q , 2 2u p q , s u t , 
 2 2rq r q , yw y w . 

5. Compute 2 2 2 2 2.g yw q u y rq u z q u p  

6. Compute  
2 2 2 2 2

2 2 2 2 2 .

h yw rq s t y r p u p

y r rq u t z rq s p d
 

7. Return g, h. 
 

The details of the proofs connected with this algorithm will  be presented 
elsewhere.  

It should be noticed that Algorithms 1 and 2 give a fast way to pass between 
the representations of a polynomial p(x) in K2n–1[x] with respect to the Lagrange-
Hermite base  
 0 0 1 1 1 1, , , ,.., ,n nc d c d c d  
and the Newton base   
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n n

x x x x x x x x x x

x x x x x x
 

 
3. A complexity of algorithm 

In this section we consider complexity of computation of Algorithm 1. The 
running time of this algorithm is O(nlogn) base operations from the field K, 
while the running time of classical algorithm is O(n2). For example, if we choose 
n of order 214, then we save about 98 percent of base operations. More precisely, 
if n = 214 and if we use Algorithm 1, then the number of base operations for 
computing values and derivatives is approximately equal to 7.62 106, whereas 
the number of base operations in the classical algorithm is 5.37 108. Hence the 
number of saved base operations for Algorithm 1 equals %42.1 .  
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Fig. 1. The numbers of saved operations in percentage terms 

 
The graph in Figure 1 shows the percentage of saved operations by Algorithm 

1 in comparison with the classical O(n2) – algorithm for different values of n. 
The similar complexity results are also true for Algorithm 2. 
 

4. Conclusions 
In this paper, we have presented fast evaluating and differentiating algorithm 

for Hermite interpolating polynomial with n knots of multiplicity 2. These knots 
are generated dynamically in a field Kby the recurrent formula of the form   
 1 01,2,.., 1;i ix x i n x . 
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The algorithm computes values and derivatives with the running time of 
C(n) + O(n) base operations from the field K, where C(n) = O(nlogn) denotes 
the complexity of computation of the wrapped convolution in Kn. On the other 
hand, the classical algorithm requires O(n2) of base operations in K. Numerical 
experiments show that this algorithm can be useful in practice, whenever n is 
sufficiently large. For example, such a situation occurs during the computation 
of shares and recovering keys in secret sharing schemes of Shamir type [5,6]. 
The similar results hold also for the inverse algorithm, which computes 
generalized divided differences. 
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