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Abstract

This paper concerns the issue of wavelet analysis of signals by continuous and discrete wavelet
transforms (CWT — Continous Wavelet Transform, DWT — Discrete Wavelet Transform). The
main goal of our work was to develop a program which, through the CWT and the DWT analyses,
would obtain graph of time-scale changes and would transform it into the spectrum, that is a graph
of frequency changes. In this program we also obtain spectra of Fourier Transform and Linear
Prediction. Owing to this, we can compare the Wavelet Transform results to those from the Fourier
Transform and Linear Prediction.

1. Introduction

A signal can be analyzed applying many methods. One of the most popular
and basic method is Fourier Transform (FT). Based on it information on
frequencies which make up the examined signal is obtained. Unfortunately FT
expects a stationary signal as a input data. If we want to process a speech signal
(which is very unstationary) we have to use the STFT algorithm (Short-Time
Fourier Transform). In this method we split a signal into small pieces
(windows), assuming that in each window signal is stationary (because human
speech, in small time intervals, is almost invariable — this assumption is near the
truth) and we compute FT for each window separately. Unfortunately FT,
because it assumes a stationarity of a signal, does not show us when a given
frequency appears in the window. Additionally exactness (resolution) of
frequencies in spectrum increases with window length. So exactness of
frequency and exactness of occurrence of frequencies in time (in window) are
inversely proportional. Therefore deciding which window length to choose, we
have to make a decision what is more important to us — good time resolution
(narrow window) or good frequency resolution (wide window).

*Corresponding author: e-mail address: irek.codello@gmail.com
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The Wavelet Transform completes this inconvenience in some way, but to
show this, we have to get familiar with few basic notions.

2. Wavelets

Wavelet y(?) is a function, which meets conditions:
— its mean value equals 0, i.e.

Dw(n)=0, ©))
t
— has non-zero values only in finite interval
<m,n> . 2)

Each wavelet has specified such an interval <m,n>. Futhermore wavelet can
begin and end with 0-values, so F(m) does not have to be the first non-zero value
and F(n) does not have to be the last one.

Fig. 1. Exemplary wavelets. From the left: Haar, Mexican Hat, Molet

Additionally from every basic wavelet y(f) we create whole family of
wavelets, by changing a and b parameters:
t— b] a —scale

1
Varll) = ﬁw (7 b — offset )

ﬂ/U\A Wos,00 € ) Wy 400 £ )
I

Fig. 2. Exemplary functions from the wavelet family y, , (¢)
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The coefficient a corresponds to horizontal scaling of the wavelet
(stretching and expanding), and the coefficient b corresponds to shifting
the wavelet.

3. CWT - Continuous Wavelet Transform
Continuous Wavelet Transform can be presented by the formula:

cnt,, = Zf(t) W, (1), f(t)—input signal. 4)

The procedure rule of CWT exemplifies Figure 3. Consecutive wavelets
Was(?), hailed from basic wavelet y(?) (they belong to the same family), are
multiplied by input signal (sample by sample). For every pair a,b we obtain a
CWT,, value. In Figure 3, horizontal scale step (parameter a) decreases
exponentially (2%), however offset (parameter b) increases linearly (step = 20).
Of course a and b values can be arbitrary and therefore this transform is called
continuous.

Additionally we assume in this paper, that CWT,, value which is equal to 3
and -3 represents the same level of similarity, hence all figures represent the
|CWT, | values.

*W\/\/v V008D w\p Vo500 E)
v
AN Wy 50 € ) d\/v\ Wo.5,200 )
v
’\4/\/\/V 1,400 t) V\/\/n ¥o.5,400 £ )
v

Fig. 3. Computational scheme of CWT

It is important to take into account the boundaries situations. Because input
signal is discrete — a wavelet has to consist of at least two samples. If it would
contain from one sample, it would have to be equal to 0 — according to (1)
condition, and then it would not meet condition number (2). Wavelet can not be
infinitely stretched as well — its length should not be larger then input signal
length. Secondarily, input signal is finite, so after shifting a wavelet to right,
wavelet non-zero values will eventually stick out of the end of the input signal.
We can handle this situation in several ways:

— we can complete the signal witch zeros — ...,S,3, Sp2, Sn.1,0,0,0,. ..
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— we can complete the signal witch mirror reflections of its end — ...,8,3, Sp.0,

Sn-15> Sn-15 Sn-25 Sn-3,- - -
— we can complete the signal periodically, that is with the samples from the

beginning of the signal — ...,S,.3, Su.2, Sn-1> S0s S15 S2,- - -
Of course the parameter b can be at best equal to signal length minus one.
The representation of CWT,, values in a figure can be, for instance, shown in

the following form:
i LU 1T CE TR TTTERERREY T T (SRR AR 1] [ [ [ ()

::n—i i
6o~ 1
0= ¥ ] . “ ]

Aihe Gode 0GiSte. OMSee 0iGe e DiSme Dot SeMa ADMe 00 Giibe SAPI OGMe Do G0l ie d0Me hSMoee | aoe
»
b
Fig. 4. Fragment of an exemplary CWT. The parameter b, which is proportional to the time, was
transformed into seconds owing to a sampling rate of an output signal

4. Spectrum

The result of the CWT analysis is a time-scale characteristics, i.e. it represents
scale fluctuations in time. Each horizontal line (corresponding to some scale a)
in Figure 4, represents similarity changes between the input signal and , ,(¢)
wavelet. The darker a fragment is, the similarity is greater, i.e. absolute value of
formula (4) is greater. To obtain a spectrogram we have to transform scale
values into frequency values. Unfortunately it is not a precise transformation,
because a wavelet instead of one frequency, represents a group of frequencies.
Therefore, this group approximated to only one, central frequency F¢ with is a
maximum in the FFT spectrum of the wavelet.

We can change each scale a into corresponding pseudo-frequency:

F= Fo By , (5)
d
where
F¢ — central frequency,
Fs—input signal sampling rate,
d — wavelet width of scale «, that is an amount of samples in the given scale a
that belongs to the <m,n> bracket from condition (2).
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Fig. 5. Wavelets: Haar, Mexican Hat, Morlet and the corresponding FFT spectra

After such a change we get the same figure with changed vertical axis:

SUT LLLERERRE T T 1 AT BN 2
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Fig. 6. Another piece of CWT. Consecutive scale numbers was changed into pseudo-frequencies

On vertical axis the scale @ was linear, however after change, the pseudo-
frequencies is not. We need to transform the figure to get linear pseudo-

o
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Fig. 7. Spectrogram created from transforming Figure 6 to get linear pseudo-frequency scale
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5. Discrete wavelets

It exists a group of wavelets, whose figures are created from finite set of
values, which are called wavelets coefficients /(n). From those values we obtain
scaling coefficients g(n).

g(n)= (—1)” -h(N—-1-n), n=0...N -1, N — coefficients count
Thereafter using recurrence formulae:

t//(t)=\/§;vz=;h(n)go(2t—n), (B(I)Z\/Egg(n)(o(%—n) @

we can obtain wavelet function y(¢) and a scaling function ¢(r) with arbitrary
resolution.

Wavelet hn) W) )

0,48296291314453,
0,83651630373781,
0,22414386804201,
-0,12940952255126

Daubechies 2

0.03222310060408,
-0.01260396726205,
-0.09921954357696,

0.29785779560561,

0.80373875180680,

0.49761866763256,
-0.02963552764603,

-0.07576571478936

Symmlet 4

Algorithm of obtaining those figures is simple:
— we put A(n) coefficients into an array if we want to get y(¢) function, or
g(n) coefficients if we want to obtain ¢(¢) function

[A[B|C[D]

— thereafter, until the array will have a suitable number of elements, we
repeat the operations:
— we do the ,,upsample” operation, i.e. after each value we insert 0

[afo[Bfof[c]o[D]0]

— we multiply all elements of the array thought scaling coefficients g(n)
according to the scheme:
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lAlo[B]o[c]o][D]o] x [GO|GI|G2[G3| =

AGO AGl AG2 AG3
BG0O BGl BG2 BG3
CG0 CGl CG2 CaG3
+ DGO DGlI DG2 DG3

A, B, Ca Da E’ Fa Ga H’ I, Ja

By this algorithm, we obtain more and more precise approximation of a

function:
\/\ O\\” m(w&ﬁ
1° 4-values 2° 10-values

4° 46-values Eﬁes\r\’ 6° 190-values

Fig. 8. Consecutive approximations of the Daubechies 2 wavelet obtained
by the recursive algorithm

We need one more step, to use a such created wavelet in the CWT. Because
CWT consists if many scales a, therefore we need y(f) wavelet with various
width d. In continuous wavelets it is not a problem, because having a formula,
we can generate a wavelet with arbitrary width d. However this recursive
algorithm gives only discrete widths (e.g. 4, 10, 22, 46, 94...), other widths we
have to interpolate. To create such a interpolated wavelet (¢) (for instance —

width d = 18) we have to remember about several things:
— [Zl//(t) :Oj:b£2y7(1) =0j. If we want a w(¢) to meet the condition
t t
(1), we can lower or higher the function so that a sum was equal zero.

Therefore we have to compute its sum A = Zl//(t) , compute an arithmetic

mean & =A/(m—n+1), and subtract this value from every sample () =
w(t)— 9o, where t = m,...,n. It is a good approximation, because () does

not differ much from A7), so A is small, so J is even smaller. Instead of
shifting samples (¢) horizontally to meet the condition (1), we move

them vertically.
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— All wavelets (¢) have to be interpolated from one wavelet. We can not
¥,_s(t) wavelet interpolate from ,_,,(¢) wavelet, and y,_,,(#) wavelet
from w,_,(t) wavelet. v, ,,(t) and w,_,(f) wavelets are consecutive

approximation of recursive algorithm, but they can be for instance slightly
shifted against each other. Then, on a spectrum, we will see horizontal
stripes, that are shifted against each other. We should generate the largest
needed wavelet, e.g. ¥,_,,,(t) and from it we should generate all w(¢)
wavelets.

g "} d

PR 55 3% 2R >

Fig. 9. Another piece of CWT. The spectrum, on which wavelets w/(¢) was interpolated from
various wavelets w(¢) . We can see clearly the shifts between scales,
with different interpolation source wavelet

e Bl R

L . T
- ELEm.

"u..m

Fig. 10. Spectrum of 3-secunds speech signal with badly normalized scales. We can see stripes
of overstated values (darker stripes) for scales with to large energy

— Wavelet, on consecutive a scales, have to have normalized energy, because
with increase of a wavelet width, increases samples count representing the
wavelet. So, to keep energy of all w(¢) wavelets at the same level, the

amplitude of the wavelets should be inversely proportional to its samples
count. Otherwise some scale will be “stronger” or “weaker”, which will
cause the corresponding scales to have overstated or underrated values. In

the case of continuous wavelets, we have 1/ Ja factor in formula 3),
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which is liable for normalization. Discrete wavelets are generated in
different way. If we want the wavelet to have energy equal C, we only

have to compute its energy E = Zt/7(t)2 and scale vertically every sample

t=n

w(t)=w(t)-\|C/E wheret=m,...,n.

6. DWT — Discrete Wavelet Transform

The DWT algorithm can only be applied to discrete wavelets. It is much
faster than CWT, but much less precise. Its procedure rule is to divide signal on
a group of values that describes general values and a group describing detail.
Number of samples on each group is by half smaller then samples count of input
signal. Values that belong to those groups represents one scale a of DWT
spectrum. We repeat this procedure, taking approximation as an input data.
Thereby we get another scale a+1, which will be by half smaller (in number of
samples). We can compute consecutive scales while samples count is greater
then 1. Because in each scale we have to times fewer samples, increasing scale
by 1 in DWT is equivalent to doubling scale in CWT. Therefore in those
transforms, scale a has different meaning, but they related with each other with

simple correlation.
¢—‘ SIGNAL — 32 samples

¢—{ APPROXIMATION I - 16 samples |—¢| DETAIL I- 16 samples | a= 1

| APPROXIMATION 11— 8 samples | | DETAIL 1l - 8 samples | a=2

Procedure scheme is simple. Let us assume, that input signal consists of 8
samples [0,...,I7. Having wavelet coefficients HO,HI,H2,H3 and scaling
coefficients G0,G1,G2,G3, we have to multiply the signal through appropriate

matrix:
[20] [GO Gl G2 G3 1107
HO| |HO Hl H2 H3 Il
L1 GO Gl G2 G3 2
Hl HO H1 H2 H3 13
2] GO Gl G2 G3||I4
H2 HO Hl H2 H3||I5
L3 | | G2 G3 GO Gl1| |16
|H3| |H2 H3 HO HL||I7]

Lx — down-pass values, i.e. approximation
Hx — high-pass values, i.e. detail.
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Then we have to sort output array and repeat the procedure for Lx values,
until there is more than one of them. The final result consists of all detail values
and last approximation value.

10 11 2 13 14 15 16 17
Lo IL1 IL2 IL3 IHO IHI 1H2? 1H3
2L0 2L1 2HO 2HI

3L0  3HO

3L0 3H0 2H0 2H1 1HO 1HI 1H2? IH3

Now we only have to properly illustrate our result. Location of approximation
and detail values is depicted below:

10 |1 || B lK|15]16 ] 17|

1HO 1H1 1H2 1H2

2HO 2H1

3HO
3L0

Fig. 11. Location scheme of DWT values

[10 | n [ 2 | B 415 ][1 | 17|

CWT | CWT | CWT | CWT | CWT | CWT | CWT | CWT
1,0 1,1 1,2 1,3 1,4 1,5 1,6 1,7

CWT | CWT | CWT | CWT | CWT | CWT | CWT | CWT
2,0 2,1 2,2 2,3 2,4 2,5 2,6 2,7
CWT | CWT | CWT | CWT | CWT | CWT | CWT | CWT
3,0 3.1 32 33 34 35 3,6 3,7

CWT 4.0 CWT 4.1 CWT 4.2 CWT 4.3 CWT 4.4 CWT 4.5 CWT 4.6 CWT 4.7

Fig. 12. Location scheme of CWT values

Our DWT spectrum will look like this:

1=

5= |
I | |

E?'I I| |1l LI ([ | ll I J (LT
RETTTTTTITIE RT v il
O I T g

Uiz -
1 1 I | 0 0 [ 1 1 | 1 0 0
080 (1 Bde L 058 100 s 10ds. 1080 1088 Lads 142 14

Fig. 13. A piece of DWT spectrum with scale a on vertical axis
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nos-

L

Fig. 14. The same piece of DWT with frequency on vertical axis
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7. Summary

As we can see in Figures 11 and 12, wavelet transform does not determine a
fixed time-frequency resolution, as it is in the Fourier Transform. For high
frequencies, because a signal changes very fast, a pressure is put on time
localization (horizontal axis is dense) instead of frequency localization (vertical
axis is rare). For lower frequencies the time is less important, so this proportion
is inverse. The CWT algorithm goes even one step further, because its time
resolution is everywhere the same — regrettably we achieve this through
increasing the computation time.

As we can see in Figure 15, DWT, CWT, FFT and LPC spectrums are similar
to each other, but non the less — they differ.
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15.0kHz -
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I R T W T —
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Fig. 15. Spectrum comparison of 3-second utterance “Sto dwadziescia jeden, sto dwadziescia
dwa”. From the top: LPC, FFT, CWT, DWT. In the case of DWT and CWT we used
Daubechies 2 wavelet

As a conclusion, in our opinion, the wavelet analysis should be investigated
through scales criterions rather than through frequency criterions. Frequency
axis creation is loaded with probably to many roundings errors, to be the base to
further computations. It is not a disadvantage — we should simply concentrate on
modeling appropriate wavelets, so that finding a high correlation between such a
wavelet and the input signal, was the information itself. In this case we would
not have to analyze frequencies but scales.
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