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Abstract 
The article is devoted to analysing the approximate absolute and approximate relative 

controllability of a given type second order infinite dimensional system. The considered dynamical 
system is governed by the evolution equation with three damping terms and three terms without 
derivatives. Following this aim, spectral theory for linear unbounded operators is involved. At first 
the representation of considered infinite dimensional dynamical system by the infinite series of 
finite dimensional systems is given. Next, two theorems on necessary and sufficient conditions of 
approximate absolute and approximate relative controllability of the considered system are 
formulated and proved. Finally, proven theorems are applied to the analysis of the elastic beam. 
 

1. Problem statement 
Let us consider the dynamical system described by the following abstract 

differential equation: 
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with the initial conditions: 
 XxxADxx ∈=∈= 10 )0(),()0( , (2) 
where ( )x t X∈  (X is a Hilbert space) and 0, 0, 0,1,2i i iα β≥ ≥ =  are the real 
constant coefficients, Bk are n × p dimensional constant matrices. The constant 
delays hk fulfils: 
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 0 10 ... ...k Mh h h h= < < < < < . (3) 

The controls 2
0([ , ), )p

locu L t R∈ ∞ . Furthermore, it is assumed that 
XADXA →⊃ )(:  is a linear, generally unbounded, selfadjoint and positive-

definite operator with domain D(A) dense in X and compact resolvent R(λ,A) for 
all λ in the resolvent set ρ(A) (assumption 1). 

The physical interpretation of equation (1) encompasses a broad class of real 
systems in this form and depends on a particular form of the A operator and of 
the coefficients αi and βi, i = 0,1,2. 

It is well known that the operator A has the following spectral properties  
[1-4]:  

– Operator A has only a purely discrete point spectrum consisting entirely of 
distinct real positive eigenvalues λi each with finite multiplicity mi 
( )im < ∞ : 

 1 2 10 ... ..., limi i ii
λ λ λ λ λ+ →∞

< < < < < < = ∞  (4) 

– The eigenfunctions of operator A { }iij mji ,...,2,1,...,3,2,1, ==φ  form 
complete orthogonal system in Hilbert space X and after ortogonalization 
form complete orthonormal system in Hilbert space X. Hence, for every 
x X∈  the following unique expansion holds true: 

 
1 1

,
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ij X ij
i j

x x φ φ
∞

= =

= < >∑∑ , (5) 

– Operator A has the following spectral resolution: 
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– The fractional power of operator A is defined as follows: 
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– Operator Aβ, 0 < β < 1 is also selfadjoint and positive-definite with domain 
D(Aβ) dense in X. 
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2. The transformation of the state equation 
Using the spectral resolution of the state operator A and its properties (4)-(9) 

we can transform the infinite dimensional dynamical system, given by the 
abstract differential equation (1), into equivalent form of the infinite series of the 
finite dimensional second order linear dynamical systems with constant 
coefficients of the following form [5]: 
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= − =∑
 (10) 

where *
ikB  is the following matrix [5]: 
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 (11) 

and xi(t) is a vector given by the equality (12): 

 1( ) ( ) ( ) ( )
i

T
i i il imx t x t x t x t⎡ ⎤= ⎣ ⎦ , (12) 

where xij(t) denotes the (ij)th coefficient of the Fourier series of spectral 
representation for the element x in the state space X. The coefficients are 
explicitly given by the inner product between element in the state space X and 
the appropriate eigenfunctions φij of the operator A: 
 ( ) ( ), 1,2,3,... 1,2,...,ij ij X ix t x t i j mφ=< > = =  (13) 

Additionally, in the series of the equations (10) there exist constant 
coefficients *

iα  and *
iβ , which are defined by the equalities (14) and (15) [5] 

pp.295: 
 ( )*

0 1 22 1,2,3,...i i i iα α α λ α λ= + + =  (14) 

 *
0 1 2 1,2,3,...i i i iβ β β λ β λ= + + =  (15) 

Basing on the infinite series of the equations (10) we can transform given 
system (1) to the more convenient form in the control theory, namely the form of 
infinite series of the set of first order finite-dimensional ordinary finite 
dimensional differential equations with constant coefficients (16) as follows [5]: 
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0

( ) ( ) ( ), 1,2,3,...
M

i i i ik k
k

t A t B u t h iς ς
=

= + − =∑  (16) 

where the state vector is given by the equality (17) [5]: 

1 1( ) ( ) ( ) ( ) ( ) ( ) ( ) , 1, 2,3,...
i i

T
i i i il il im imt t t t t t t iς ξ µ ξ µ ξ µ⎡ ⎤= =⎣ ⎦  (17) 

and the state matrix Ai and the input matrix Bi have form (18), (19) respectively 
[5]: 
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The variables ( ), ( )ij ijt tξ µ  are defined by formula (20) as follows [5]: 
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, 1,2,3,... 1,2,...,
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3. The Jordan decomposition of the state matrix 

The Jordan decomposition of the state matrix (18) is investigated in paper [5] 
and now let us recall the results. This matrix has two distinct eigenvalues si1, si2 
each with the same multiplicity mi [5] pp.297: 

 
* *2 * * *2 *
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Depending on the particular values of the coefficients αi ≥ 0, βi ≥ 0, i = 0,1,2 
the Jordan’s canonical forms J(Ai) and the transition matrices T(Ai) have the 
following forms, respectively [5]: 

3.1. Case 1:
*2

* *0,
4
i

i i
α

β β≠ ≠  (22) 

 1 1 2 2( ) [ ... ... ] 1,2,3,...
i i

i i i i i

m times m times
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− −

= = , (23) 
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times
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3.2. Case 2: * *0, 0i iβ α= ≠  (25) 

 * *( ) [0...0 ... ] 1,2,3,...
i i

i
m times m times

i iJ A diag iα α
− −

= − − = , (26) 
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3.4. Case 4: * * 0i iα β= =  (31) 
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 (33) 

Obviously the following identity holds true for all the Jordan’s decomposition 
cases: 
 1( ) ( ) ( ) 1,2,3,...i i i iA T A J A T A i−= ⋅ ⋅ =  (34) 

Now let us verify whether the operator Ai (18) is the infinitesimal generator of 
an analytic semigroup. Following this aim let us calculate some auxiliary limits. 
By the assumptions αi ≥ 0, βi ≥ 0, i = 0,1,2, formulas (14), (15) and the property 
of the state operator (4) it can be stated that ((35), (36)): 

 * *2 *lim 4Re i ii iα α β
→∞
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⎣ ⎦

+ −  (35) 
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Moreover, from these assumptions and (14), (15) we have (37): 
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Now based on (35)-(37) we can calculate (38), (39): 
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so the operator Ai (18) is the infinitesimal generator of an analytic semigroup. 
 

4. Basic notions 
Following the aim of analyzing the approximate controllability of infinite 

dimensional system with delays (1) at first let us present this notion in the case 
of finite dimensional systems. At first let us consider the linear stationary 
dynamical system, described by the differential equation without delays in 
control [6] pp.5: 
 0 0( ) ( ) ( ), 0x t A x t B u t t= + ≥  (40) 

 
4.1. Definition 4.1 [6] 

The dynamical system (40) is said to be controllable, if and only if there 
exists such a control u(t), which will transfer the system from any given initial 
state to any final state in the control space in the finite time. 

 
4.2. Theorem 4.2 [6] pp.16, [7] pp.70 

The dynamical system (40) is controllable if and only if condition (41) holds 
true: 
 2 1

0 0 0 0 0 0 0| | | ... | nrank B A B A B A B n−⎡ ⎤ =⎣ ⎦  (41) 

Now let us consider linear stationary dynamical system, described by the 
differential equation with delays in control (42) [6] pp.196: 

 0 0
0

( ) ( ) ( ), 0
M

k k
k

x t A x t B u t h t
=

= + − ≥∑  (42) 

where A0, B0 are the constant matrices with dimensions respectively n×n, n×p.  
For the dynamical system of form (42) besides the instantaneous state 

x(t) ∈ Rn, we introduce also the notion of the so-called complete state at time 
{ }, ( ) ( ), ( )tt z t x t u s= , where ( ) ( )tu s u s=  for ],Ms t h t⎡∈ −⎣  [15]. Therefore we 

distinguish two basic notions of controllability for dynamical systems (42), 
namely: relative controllability and absolute controllability [6] pp.195. 
Definitions 4.3 and 4.4 taken from position [6] pp.195 are adapted to the 
dynamical system (42) i.e. with multiple, lumped time-invariant delays in 
control. 

 
4.3. Definition 4.3 [6] pp.195 

Dynamical system (42) is said to be relatively controllable in [t0,t1], if for any 
initial complete state z(t0) and any vector x1 ∈ Rn, there exists a control 
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[ ]( )2
0 1, , pu L t t R∈  such that the corresponding trajectory ( )0, ( ),x t z t u  of 

dynamical system (42) satisfies the following condition (43): 
 ( )1 0 1, ( ),x t z t u x= . (43) 

 
4.4. Definition 4.4 [6] pp.195 

Dynamical system (42) is said to be absolutely controllable in [t0,t1], if for 
any initial complete state z(t0), any vector x1 ∈ Rn and an arbitrary function 

[ ]( )2 0, , p
Mw L h R∈  there exists a control [ ]( )2

0 , , p
Mu L t h R∈  such that the 

complete state at time t1 of dynamical system (42) satisfies the following 
condition (44): 
 { }1 1( ) ,z t x w= . (44) 

There are some known theorems for verifying the relative and absolute 
controllability of linear time varying systems with delays and control. Let us 
present two main theorems adapted to the stationary dynamical system of the 
form (42). 

 
4.5. Theorem 4.5 [6] pp.202 

Dynamical system (42) is relatively controllable in [t0,t1], if and only if the 
dynamical system without delays in control, of the form  
 [ ]0 0 0 1( ) ( ) ( ), ,x t A x t B w t t t t= + ∈  (45) 
where 
 [ ]00 01 0( 1) 0 1| | ...| , , , kp

kB B B B t t t w R−⎡ ⎤= ∈ ∈⎣ ⎦  (46) 

is controllable in [ ]0 1 1,kt h t−+ . 
 

4.6. Theorem 4.6 [6] pp.207 
Dynamical system (42) is absolutely controllable in [t0,t1] if and only if the 

dynamical system without delays in control, of the form  
 [ ]0 0 0 1

ˆ( ) ( ) ( ), ,x t A x t B u t t t t= + ∈ , (47) 
where 

 0
0 0

0

ˆ k

M
A h

k
k

B e B−

=

= ∑  (48) 

is controllable in [ ]0 1, Mt t h− . 
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5. Approximate controllability analysis 
Both theorems 4.5 and 4.6 base on the transformation of the system with 

delays in controls into the corresponding system without delays in controls. It 
can be noticed that that the state matrix in the corresponding systems (45) and 
(47) remains the same as in the investigated system with delays in controls (42). 
Let us return to the considered in this paper second order infinite dimensional 
dynamical system (1) in the form of the series (16). We will analyze its 
approximate relative and approximate absolute controllability by theorems 4.5 
and 4.6, so the system series (16) in both the corresponding forms (45) and (47) 
has the same state matrices Ai like in the system (16). In point 3 we recalled the 
Jordan decomposition of the state matrices Ai. This form is very convenient for 
testing the controllability of a given dynamical system-involves only calculating 
the 1

i ikT B−  term, instead of calculating the n–1 terms of the form l
i iA B  in the 

block matrix (41) necessary in case of using theorem 4.2. The general conditions 
of the controllability for the stationary, linear, finite dimensional without delays 
in the control dynamical system in the Jordan canonical form have been 
formulated by C.T.Chen in Chapter 5.5 of work [8] and have been recalled in 
paper [6] by theorem 1.5.1. In the next subchapters we use theorems 4.5 and 4.6 
and the Chen’s theorem to find the conditions of approximate absolute and 
approximate relative controllability of a given system (1). 

 
5.1. Theorem 5.1 

Dynamical system (1) is approximately absolute controllable at any time if 
and only if the infinite series of equalities (49) is fulfilled: 

 
1

2

*

0

*

0

1,2,3,...

i k

i k

M
s h

ik
k
M

s h

i

ik i
k

rank m
i

rank

e B

e B m

−

=

−

=

⎧
=⎪

⎪ =⎨
⎪ =⎪⎩

∑

∑
, (49) 

where *
ikB  is given by (11). 

Proof of the absolute controllability 
The proof will be given as an example for case 1 of the Jordan decomposition 

(paragraph 3.1). We will prove the conditions of the absolute controllability of 
system (1) in the form of series (16) by the theorem 4.6 and mentioned Chen’s 
theorem [6] pp. 25. At first let us calculate the matrix B̂  for the system (16): 

 1

0 0

, 1,2,3,...ˆ i k i k

M M
A h J h

i ik i i ik
k k

B e B T e T B i− − −

= =

= = =∑ ∑ . (50) 
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The key role in the Chen’s theorem plays the 1 ˆ
i iT B−  term. The inverse matrix 

1
iT −  is calculated in work [5] pp. 300, so from (50) we have: 

1

1

2

2

1 1

0

1

1

21 2

2

2

ˆ

0 0 0 0 0

0 00 0 01
0 00 0 0

0 00 0 0
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i i
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e s
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β

β
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−− −

=
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−

−

−
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⎡ ⎤ −⎡⎢ ⎥
⎢ ⎥
⎢ ⎥

−⎢ ⎥= ⎢ ⎥ −− ⎢ ⎥
⎢ ⎥
⎢ ⎥ −⎣⎢ ⎥⎣ ⎦

∑

1 1

1 1

2 2

2 2

0

2

1

1

1 2 2

2

2

0 0

0 01

0 0

0 0

i

i k i k

i k i k

i k i k

i k i k

i

M

ik
k

m times

s h s h
i i

s h s h
i i

s h s hi i i i

s h s h
i i

m times

B

e s e

e s e
s s e s e

e s e

β

β

β

β

=

−

− −

− −

− −

− −

−

⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

=⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎦

⎡ ⎤−
⎢ ⎥
⎢ ⎥
⎢ ⎥
−⎢ ⎥= ⎢ ⎥− −⎢ ⎥

⎢ ⎥
⎢ ⎥
⎢ ⎥−⎣ ⎦

∑

0

M

ik
k

B
=

∑
 (51) 

Considering that the odd rows in the series of the matrices ikB  (19) are zero 
from (51) we have directly (52): 

 

1 1

1 1

2 2

2 2

( ) ( )
1 1 1

( ) ( )
1 21 1 21

( ) ( )
1 2 0 2 1 2

( ) ( )
2 21 2 2

1ˆ

i k i k

i k i k

i k i k

i k i k

s h s hi i
i kn i knp

s h s hi iM
i k i k p

i i s h s hi i
i i k i kn i knp

s h s hi i
i k i k p

s e b s e b

s e b s e b
T B

s s s e b s e b

s e b s e b

− −

− −
−

− −
=

− −

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥− − −
⎢ ⎥
⎢ ⎥
⎢ ⎥− −⎢ ⎥⎣ ⎦

∑  (52) 

Now let us return to the verification of the controllability of dynamical 
system (1) in the form (16). Applying the Chen’s theorem to it, based on formula 
(52), considered system (16) presented in the corresponding form without delays 
(47) with the input matrix ˆ

iB  (given by (50)) is approximately controllable if 
and only if series (53), (54) are fulfilled: 
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1 1

1 1

( ) ( )
1 1 1

1 2 0 ( ) ( )
1 21 1 2

1 , 1,2,3,...

i k i k

i k i k

s h s hi i
i kn i knpM

i
i i k s h s hi i

i k i k p

s e b s e b
rank m i

s s
s e b s e b

− −

= − −

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥

= =⎢ ⎥⎢ ⎥
−⎢ ⎥⎢ ⎥

⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦

∑  (53) 

 
2 2

2 2

( ) ( )
2 1 2

1 2 0 ( ) ( )
2 21 2 2

1 , 1,2,3,...

i k i k

i k i k

s h s hi i
i kn i knpM

i
i i k s h s hi i

i k i k p

s e b s e b
rank m i

s s
s e b s e b

− −

= − −

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥

= =⎢ ⎥⎢ ⎥
−⎢ ⎥⎢ ⎥

⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦

∑  (54) 

Division of matrix (52) into two series of rank conditions (53), (54) follows 
from the mentioned Chen’s theorem and the Jordan decomposition of the state 
matrices Ai (18) in case 1 (point 3.1, equation (23)): we have two Jordan blocks 
corresponding to two different eigenvalues si1, si2 (21). By the basic linear 
algebra rules from (53) we have (55): 

 ( )1
'*

1
0

, 1,2,3,...i k

M
s h

i ik i
k

rank s e B m i−

=

= =∑ , (55) 

where *( ) 'ikB  matrices can be obtained from the input matrices *
ikB  (11) by 

reversing the order of the rows. By this notice from (53)-(55) we directly have 
the condition from the thesis of proving theorem 5.1 (49). 

The Chen’s theorem gives the conditions for controllability of time-invariant 
system of the Jordan form, but in theorems 4.5 and 4.6 we have controllability in 
closed time ranges. But by Lemma 1.4.1 from the work [6] pp. 16 for the time-
invariant systems the notions of the controllability in a closed time range and the 
controllability at any time are equivalent. 

The pProof in the remaining cases 2-4 goes similarly and detailed calculations 
will be omitted. A special attention should be paid to cases 3 and 4 because they 
correspond to two-dimensional Jordan blocks with ones above the main diagonal 
in the Jordan decomposition of the state matrices, presented in points 3.3 and 3.4 
(formulas (29) and (32)).  

Q.E.D 
 

5.2. Theorem 5.2 
Dynamical system (1) is approximately relatively controllable if and only if 

the infinite series of equalities (56) are fulfilled: 
 *

0 , 1,2,3,...i irank B m i =⎡ ⎤ =⎣ ⎦ , (56) 

where *
0iB  is given by (11). 
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Proof of the relative controllability 
The proof will also be given for an example for case 1 of the Jordan 

decomposition (paragraph 3.1). The proof bases on theorem 4.5 and the Chen’s 
theorem [6] pp. 25. The 1

i iT B−  term can be easily calculated (57): 

 [ ]
( )
( )

'*
1 0

1 1
0 '*1 2

2 0

1,2,3, ..1 .
i i

i i i i
i i

i i

s B
T B T B

s s s
i

B

− −

⎡ ⎤
⎢ ⎥⎣ ⎦= = ⋅

− ⎡ ⎤− ⎢ ⎥⎣ ⎦

= , (57) 

where *( ) 'ikB  matrices can be obtained from the input matrices *
ikB  (11) by 

reversing the order of the rows, and the matrix 0iB  is given by (19). From (57) 
and the mentioned Chen’s theorem there directly follows the series of equalities 
(56) for the approximate relative controllability in the range [t0,t1]. Also here by 
Lemma 1.4.1 from work [6] pp. 16 for the time-invariant systems the notions of 
the controllability in a closed time range and the controllability at any time are 
equivalent. The proof in the remaining cases 2-4 also proceed similarly. Notice 
from the proof of the absolute controllability pertaining to cases 3 and 4 holds 
true in the relative controllability. 

Q.E.D. 
 

6. Mechanical example 
Let us consider a mechanical system described by the following linear partial 

differential equation: 

 

2 4 5 3 2

2 4 4 2 2

3
1 1 2 2

( , ) ( , ) ( , ) ( , ) ( , )2 6 3

( ) ( 1) 2 ( ) ( 1)

x z t x z t x z t x z t x z t
t z z t z t z

zu t z u t u t u t

∂ ∂ ∂ ∂ ∂
+ + − − =

∂ ∂ ∂ ∂ ∂ ∂ ∂
= + − + + −

 (58) 

with initial conditions (59), (60): 
 0 0( ,0) ( ), (0, )x z x z z L= ∈ , (59) 

 1 0
( ,0) ( ), (0, )x z x z z L

t
∂

= ∈
∂

 (60) 

and boundary conditions: 

 
22

0
0 2 2

( , )(0, )(0, ) ( , ) 0, 0x L tx tx t x L t t
z z

∂∂
= = = = >

∂ ∂
 (61) 

The function x(z,t) is equal to the movement of the considered elastic beam in 
the Y axis direction in the time moment t>0 and in the point z ( 0<z<L0). The 
first two terms in equation (58) are the only terms taken into account for the 
ideally springy elastic beam. The next two terms are modelling the phenomenon 
of the internal friction and the remaining fifth term represents the effect of axial 
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force on the beam. The boundary conditions correspond to hinged ends of the 
beam. More detailed description of these terms and the phenomenon they are 
describe can be found in papers [4,9,10,11]. 

 
6.1. The definition of the state differential operator 

Let us define the linear unbounded differential operator : ( )A D A H H⊂ →  
[9,11] in the following way: 

 
4

4
( )( ) , ( )x zAx z x D A

z
∂

= ∈
∂

, (62) 

( ) ( )
4 2 2

4,2 2
0 0 0 00 4 2 2( ) ( ) [0, ], : ( ) [0, ], , (0) ( ) (0) ( ) 0d d x d xD A x z H L R x z L L R x x L L

dz dz dz

⎧ ⎫⎪ ⎪= ∈ ∈ = = = =⎨ ⎬
⎪ ⎪⎩ ⎭

(63) 
where ( )4,2

0 0[0, ],H L R  denotes the fourth order Sobolev space defined in the 
range [0,L0].  

It can be proved [9,11] that the eigenvalues λi and the eigenfunctions φi(z) of 
the operator A have the form (64), (65): 

 
4

0

1,2,3,...i
i i
L
πλ

⎛ ⎞
= =⎜ ⎟

⎝ ⎠
 (64) 

 
0 0

2( ) sin 1,2,3,...i
izz i

L L
πφ = =  (65) 

and the operator A is linear, self-adjoint and positively defined. Particularly it 
can be defined by the following fractional power (8) of the operator A [9]: 

 
1 2
2

2
xA x

z
∂

= −
∂

 (66) 

 ( ) ( )
1 2

2,2 22
0 0 00 2( ) [0, ], : ( ) [0, ], : (0) ( ) 0dD A x H L R x z L L R x x L

dz

⎧ ⎫⎪ ⎪= ∈ ∈ = =⎨ ⎬
⎪ ⎪⎩ ⎭

 (67) 

where 2,2
0H  denotes the second order Sobolev space on the interval [0,L0] and 

1 2( ) ( )D A D A⊂ . 
 

6.2. The state equation 
Applying operator A (62) to partial differential equation (58) with boundary 

conditions (61) we obtain the following abstract, ordinary second order 
differential equation with respect to t in the Sobolev space H: 
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1 1 12
2 2

2
0

( ) ( )2 3 3 ( ) ( ), 0k k
k

d x t dx tA A A A x t B u t h t
dtdt =

⎛ ⎞ ⎛ ⎞
+ + + + = − >⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
∑ , (68) 

where: 

 
2

2
( ) ( ), , ( )d x t dx t x t H

dtdt
∈ , (69) 

 [ ] 3
0 12 1B z B z⎡ ⎤= = ⎣ ⎦  (70) 

 0 10, 1h h= =  (71) 
It is easy to see that equation (68) has form of the dynamical system (1) after 

introduction of the following coefficients: 
 0 1 2 0 1 20, 1, 3, 0, 1, 3α α α β β β= = = = = =  (72) 

 
6.3. The approximate absolute controllability analysis of the infinite dimensional 

mechanical system 
In this subchapter the analysis of the approximate absolute controllability of 

given infinite dimensional dynamical system (58) will be performed. Also this 
dynamical system will be represented by the infinite series of the finite 
dimensional dynamical systems (16). These aims will be accomplished theorem 
5.1. First, let us calculate the coefficients *

iα  and *
iβ  on the basis of its 

definitions (14), (15): 

 
4 2

*

0 0
2 6 , 1,2,3,...i

i i i
L L
π πα

⎛ ⎞ ⎛ ⎞
= + =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
, (73) 

 
4 2

*

0 0
3 1,2,3,...i

i i i
L L
π πβ

⎛ ⎞ ⎛ ⎞
= + =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
. (74) 

In theorem 5.1 there are needed the matrices *
ikB . Considering (65), (70) we 

have (75), (76): 

 
0 0

*
0

0 0 00 0

2 sin 2 sin , 1,2,3,...
L L

i
iz izB z dz dz i

L L L
π π⎡ ⎤

⎢ ⎥= =
⎢ ⎥⎣ ⎦
∫ ∫  (75) 

 
0 0

* 3
1

0 0 00 0

2 sin sin , 1,2,3,...
L L

i
iz izB z dz dz i

L L L
π π⎡ ⎤

⎢ ⎥= =
⎢ ⎥⎣ ⎦
∫ ∫  (76) 

Let us look at the thesis of theorem 5.1. In the case of the operator (62), (63) 
mi = 1, so the rank in condition (49) is being testified on the 2-element horizontal 
vector, and the conditions are fulfilled if and only if any of the vector elements is 
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nonzero. Moreover, the 1 2,  i k i ks h s he e− −  coefficients are nonzero. Now let us look 
at the matrices *

ikB  (75), (76). By the Lemma 1 from work [5] pp. 312-313, the 

integrals 
0

00

sin
L

izz dz
L

π
∫ , 

0
3

00

sin
L

izz dz
L

π
∫  are positive. It’s also easy to check that 

the integral 
0

00

sin
L

izdz
L

π
∫  is nonnegative. Thus in the sums 

1 2

1 1
* *

0 0

,i k i ks h s h
ik ik

k k

e B e B− −

= =
∑ ∑  the non-negative and non-zero *

ikB  matrices are taken 

into the linear combination with positive exponential coefficients obviously 
giving non-zero vectors, so condition (49) is fulfilled. 

 
6.4. The approximate relative controllability analysis of the infinite dimensional 

mechanical system 
Theorem 5.2 by (75) and the remarks from point 6.3 are fulfilled. 
 

6.5. Summary of the mechanical example 
The mechanical system (58) with conditions (59)-(61) is both aproximately 

relative and absolute controllable at any time. 
 

Conclusions 
In the article we obtained general conditions of different types of 

controllability for the infinite dimensional systems. It was possible thanks to 
making the use of the Chen’s theorem. The obtained theorems of the 
approximate controllability without constraints, with the cone type constraints, 
and with delays in control hold true for the second order of the verified infinite 
dimensional dynamical system. This is innovative outcome in the controllability 
theory field. 

Moreover, it should be pointed out that the presented methods can be easily 
adapted to the analysis of other dynamical properties of the considered nth order 
system, i.e. observability, attainability, stability and optimal control. 

A possible way of further investigations can be the generalisation of the 
presented results into the case of arbitrary eigenvalues multiplicities of the state 
operator. 
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