

Annales UMCS Informatica AI 8(1) (2008) 5-13
10.2478/v10065-008-0001-9

Annales UMCS
Informatica
Lublin-Polonia

Sectio AI
http://www.annales.umcs.lublin.pl/

Stream security particularities in Java

Michał Chromiak*, Zdzisław Łojewski

Institute of Computer Science, Maria Curie-Skłodowska University,
pl. M. Curie-Skłodowskiej 1, 20-031 Lublin, Poland

Abstract

Regarding numerous threats connected with sending and storing confidential data, there is a
problem of assuring the efficiency. As an answer to those needs, we discuss the SUN‘s Java
Virtual Machine mechanism provided to assure security to a single object. Thanks to the
mechanism of serialization in Java, it is possible to provide secure solution. In this paper, we
compare the efficiency of algorithms such as DES, Blowfish, AES, RSA and ECC as means of
securing serialization of an object.

1. Introduction
Concerning increasing threats including storing and transferring confidential

data, there is a growing demand for secure solutions. The Java Virtual machine
provided by Sun uses most of the modern ways of securing the transmission of
data. As every object can be sent as a serialized stream, there are mechanisms
that allow its encryption. Since the amount of data being encrypted rises, choice
of an efficient algorithm becomes crucial. In this paper we examine some
particularities of the encryption of objects graph1 byte stream. We have covered
some areas that can also be found in [1].

1.1. Main goals

The main objective of the paper is to present the results of tests made as a part
of a larger project. The project goal is to provide platform independent security
architecture for sensitive data transfer. The conclusions from this paper are being
used for the project development.

The following questions are to be answered:
1. What are the cryptographic aspects of Java streams?

*Corresponding author: e-mail address: mchromiak@hektor.umcs.lublin.pl
1All objects referenced directly or indirectly from within the serialized object and

implementing the tagging Serializable interface.

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 11/01/2026 19:03:44

UM
CS

Michał Chromiak, Zdzisław Łojewski 6

2. What is the time efficiency regarding stream cryptography using sym-
metric algorithms?

3. What are the differences comparing symmetric and asymmetric
cryptography algorithm implementations in Java?

This paper does not intend to discuss the accuracy of the time measurement.
Even though it is possible that some discrepancy will occur, it is believed that
this will be eliminated by more precise hardware timing sources that will
hopefully be soon designed and utilized by operating system calls.

2. Testing environment

The choice was the linux because of the Windows JVMcalls to
System.nanoTime() is implemented using the QueryPerformanceCounterQuery
PerformanceFrequency API (if available, else it returns currentTimeMillis∗106).
As its default 10 ms timer interrupt period can be modified by application
programs using the timeBeginPeriod/timeEndPeriod API’s there is no guarantee
that a wanted period will be supported, moreover its accuracy has been
questioned in some reports [2]. The testing procedure for all tests has been
performed on 100 different objects of approx. 5KB each. The testing architecture
was as follows:

– Hardware: Intel®CoreTM 2 Duo E6600 @ 2.40Ghz, 2GB RAM
– Software: Linux (2.6.23.9-85), Fedora 8, Sun JDK 1.6.0_03

3. Byte distribution in streams
As a security must, the information sent throughout the potentially hostile

environment e.g. the Internet, should be as secure as it is possible regarding the
efficiency aspect. One of the security bases is the distribution of data structure
along the transfer domain (i.e. all possible values of the information byte). At the
basic level, the byte distribution is the issue. That is why in this paper we present
the Java basic stream mechanism analysis.

3.1. The regular stream distribution

To find the distribution of byte values in the transmitted stream an external
class was made. Its purpose was to check each byte of data from the stream and
add it to an appropriate analyzing structure. As an obvious way of representing
the results, is to treat the byte values of a stream as 0 to 255 codes2.

As a number of serialized objects were sent as a stream the statistics
displayed in Figure 1 were obtained.

2Just as it takes place in the case of ASCII codes.

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 11/01/2026 19:03:44

UM
CS

Stream security particularities in Java 7

Fig. 1. The pure secured stream byte distribution

It can be clearly seen that the byte distribution provided is unacceptable

regarding the frequency analysis attacks that can take advantage of this stream
structure. This behaviour is not permanent but the tendency for such a
disproportion holds across multiple tests. From the test results, it can also be
claimed that the majority of the values (i.e. over 80%) from the first group
obtain zero value.

3.2. Entropy provided by cryptographic mechanisms
As the above results for pure stream proves that it appears to be insecure,

some tests have been performed on securing it by using the CipherOutput/
InputStream classes provided by the JCA/JCE architecture. For this purpose the
Bouncy Castle [3] provider has been used. The same tests have been performed
for the streams secured with the DES, TripleDES, Blowfish and AES algorithms
as the most widespread. The acquired results displayed in Figure 2 provided
much more reliable byte distribution regarding the security aspect.

Fig. 2. The secured stream byte distribution

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 11/01/2026 19:03:44

UM
CS

Michał Chromiak, Zdzisław Łojewski 8

As the figures are not as clearly visible as for the pure stream some statistical
analysis needs to be applied. For the perfect byte distribution, the standard
deviation should be null and each byte value in this case would have the average
value of one out of 256. This of course is just a theory, because the results
(Figure 3) for the encryption of a stream provide much better byte distribution
than the pure stream did, but not to such an extent. Some tests have also been
made on the byte distribution provided by the RSA. Of course, it needs to be
mentioned that the RSA is not a kind of cipher used for a stream cryptography.
Because of its particularities, the length of a message cannot be longer than the
key length. Therefore for the key of 1024 bits the message can be, as in the
examined case, maximum 117 Bytes3. To avoid the byte distribution provided by
the message itself the stream bytes were all zeros. RSA is a cryptosystem used
just for symmetric algorithms key distribution, therefore it is combined with one
of the symmetric ciphers.

Fig. 3. Statistical analysis for byte distribution in an encrypted stream

Apparently, following Figure 4, the byte distribution provided by the RSA

outperforms the symmetric ciphers. This of course, is not conclusive in terms of
choosing the RSA as the stream encryption algorithm4 but reveals an interesting
particularity of the RSA cipher.

Fig. 4. Statistical analysis for byte distribution in an encrypted stream

3PKCS#1 uses the high order 11 Bytes of the RSA input to implement its padding scheme (128

B -11 B = 117 B).
4Further tests show that the time efficiency of RSA is outperformed by the symmetric ciphers

in scale of order of magnitude.

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 11/01/2026 19:03:44

UM
CS

Stream security particularities in Java 9

4. The System.nanoTime()
To measure the time consumption of an algorithm, to some extent, it would

be the best to measure it natively. For that purpose the use of Java Native
Interface would be a must. Although this would be the best for watching the
efficiency of bytecode itself JNI could provide extra overhead to JVM. That is
why the solution provided by System.nanoTime() is considered in this
document.

The System.nanoTime() method according to [4] provides the most precise
available system timer, in nanoseconds. The value returned represents
nanoseconds from some fixed but arbitrary time e.g from boot up or JVM start.
It is also claimed that this method can only be used to measure elapsed time and
is not related to any other notion of system or wall-clock time. Its general issue
is that it only provides nanosecond precision, but not necessarily nanosecond
accuracy.

For this kind of JVM functions, it would be preferable to use the finest
grained clock possible. For that purpose, the POSIX clock_gettime() with the
CLOCK_MONOTONIC, as described in [5] and [2], seems to be the right
choice. As it is known that the clock_gettime() is supported in current linux
libraries and also according to [6] sufficiently recent versions of GNU libc and
the Linux kernel supports the CLOCK_MONOTONIC clock as well. As this
feature is not supported in most distributions, including the testing environment,
the System.nanoTime() call relies on alternative, after [7], function
gettimeofday()5 as described in [8], that works with microseconds accuracy
depending on a system.

Regarding this and as a conclusion from discussion [2], we have chosen the
System.nanoTime() to manage with most of the tests workload, on measuring
the elapsed times. What also needs to be mentioned is that the disk utilization6
was not participating in the testing procedures.

5. The time efficiency of symmetric algorithms

The tests performed on time consumption of each symmetric algorithm were
all based on the same scheme. Every encryption-decryption phaze was divided
into some partial procedures (i.e. their times) evolved from the cryptographic
and JCA/JCE architecture. Each test consists of 1007 repetitions of each partial
procedure of the entire process.

5 It has been found that the native operation executes the following: nanoseconds = (seconds *

1000000) + microseconds) * 1000 As the strace analyze and the function code [9] has been
analyzed.

6As a potential source of overhead.
7 The scheme modified to 1000 repetition model did not change the general tendency.

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 11/01/2026 19:03:44

UM
CS

Michał Chromiak, Zdzisław Łojewski 10

5.1. The time efficiency – results
As the tests were performed the following results have been obtained.

Fig. 5. Time consumption of the DES algorithm

There is only one particularity in the time efficiency of the first two

algorithms that can also be found in all of the tested algorithms, meaning the
time spent on key generation. It can be clearly seen that it is the main factor that
decides for the entire process time. It might not be unexpected regarding the fact
that it includes the generation of secure random, but it is important to note how
significant it is regarding the entire process8.

Fig. 6. Time consumption of the Triple DES algorithm

All of the tests on symmetric algorithms lead to the similar pattern of time

consumption. One more regularity can be noticed regarding the Blowfish
algorithm apart from the time consumed for key generation. The time spent on

8It will be essential for the comparison to the ECC.

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 11/01/2026 19:03:44

UM
CS

Stream security particularities in Java 11

cipher object’s initialization took relatively more time than other activities
during the entire process. But this does not disturb the general tendency.

Fig. 7. Time consumption of the Blowfish algorithm

Fig. 8. Time consumption of the AES algorithm

6. Symmetric and Asymmetric algorithms comparison

The same testing procedure was applied to the RSA asymmetric
cryptosystem. The results presented in Figure 9 display however, some
interesting particularity that comes from the RSA algorithmic characteristic.
From the theory of the RSA we know that the private exponent of the private
key is much larger than the public exponent. Therefore using the RSA private
key causes slower computations than the public key.

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 11/01/2026 19:03:44

UM
CS

Michał Chromiak, Zdzisław Łojewski 12

Fig. 9. Time consumption of the RSA algorithm

7. Elliptic Curve Cryptography

Following [10] and key length (Figure 10) it must be claimed that combining
it with the results of performed tests ECC becomes the most suitable scheme for
securing data.

Fig. 10. Key length comparison for different cryptosystems with the same strength

As the time of key generation in the tested algorithms became the main

factor; reducing it while retaining the same cryptographic strength would be the
optimal solution.

Conclusions

Along the performed tests it has been shown that regarding the symmetric
algorithms comparison, the AES algorithm with this Java implementation
provider, has outperformed other algorithms in terms of better byte distribution
and also presented that time efficiency has given better results.

Thanks to preserving RSA keys’ size disproportion particularity in Java
implementation, it can be used for further project work to allow ciphering on
clients with limited computational resources. Thanks to numbers achieved from
those tests, it can be confirmed that the RSA is also much slower comparing to
the symmetric ciphers.

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 11/01/2026 19:03:44

UM
CS

Stream security particularities in Java 13

Further work needs to be done on promising comparison for asymmetric
cryptosystems with the NIST results for ECC; ECC advantage needs to be
confirmed regarding the Java ECC architecture and implementation.

References

[1] Lamprecht C., et al., Investigating the efficiency of cryptographic algorithms in online
transactions. School of Computing Science, University of Newcastle upon Tyne, UK I. J. of
Simulation, 7(2).

[2] http://blogs.sun.com/dholmes/entry/inside the hotspot vm clocks, Evaluation
[3] http://www.bouncycastle.org/
[4] Sun Microsystems, Inc. (Santa Clara, CA, USA), JavaTMPlatform, Standard Edition 6 API

Specification. Copyright 2006 Sun Microsystems, Inc. All rights reserved. available on-line
at: http://java.sun.com/javase/6/docs/api/java/lang/System.html

[5] http://mia.ece.uic.edu/~papers/WWW/books/posix4/DOCU 007.HTM; The Department of
Electrical and Computer Engineering,University of Illinois

[6] http://ibm5.ma.utexas.edu/cgi-bin/man-cgi?clock gettime+3
[7] http://bugs.sun.com/bugdatabase/view bug.do?bug id=6298653
[8] http://linux.die.net/man/2/gettimeofday
[9] http://lxr.linux.no/linux-bk+v2.6.10/arch/i386/kernel/time.c#L94
[10] http://csrc.nist.gov/publications/nistpubs/800-57/sp800-57-Part1-revised2 Mar08-2007.pdf;

National Institute of Standards and Technology, Computer Security Division, Computer
Security Resource Center Recommendation for Key Management Part 1: General (Revised),
March 2007

[11] Sun Microsystems, Inc. (Santa Clara, CA, USA), JavaTMCryptography Architecture API
Specification & Reference. available on-line at: http://java.sun.com, Last Modified: 25 July
2004.

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 11/01/2026 19:03:44

UM
CS

Pow
er

ed
 b

y T
CPDF (w

ww.tc
pd

f.o
rg

)

http://www.tcpdf.org

