Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 11/01/2026 19:03:44

e Cn Annales UMCS
£z l% Annales UMCS Informatica AI 8(1) (2008) 5-13 .
g [N Informatica
LY LTJM 10.2478/v10065-008-0001-9 Lublin-Polonia
R Sectio Al

http://www.annales.umcs.lublin.pl/

Stream security particularities in Java

Michat Chromiak”, Zdzistaw Lojewski

Institute of Computer Science, Maria Curie-Sktodowska University,
pl. M. Curie-Skiodowskiej 1, 20-031 Lublin, Poland

Abstract
Regarding numerous threats connected with sending and storing confidential data, there is a
problem of assuring the efficiency. As an answer to those needs, we discuss the SUN‘s Java
Virtual Machine mechanism provided to assure security to a single object. Thanks to the
mechanism of serialization in Java, it is possible to provide secure solution. In this paper, we
compare the efficiency of algorithms such as DES, Blowfish, AES, RSA and ECC as means of
securing serialization of an object.

1. Introduction

Concerning increasing threats including storing and transferring confidential
data, there is a growing demand for secure solutions. The Java Virtual machine
provided by Sun uses most of the modern ways of securing the transmission of
data. As every object can be sent as a serialized stream, there are mechanisms
that allow its encryption. Since the amount of data being encrypted rises, choice
of an efficient algorithm becomes crucial. In this paper we examine some
particularities of the encryption of objects graph' byte stream. We have covered
some areas that can also be found in [1].

1.1. Main goals

The main objective of the paper is to present the results of tests made as a part
of a larger project. The project goal is to provide platform independent security
architecture for sensitive data transfer. The conclusions from this paper are being
used for the project development.

The following questions are to be answered:

1. What are the cryptographic aspects of Java streams?

*Corresponding author: e-mail address: mchromiak@hektor.umes.lublin.pl
'All objects referenced directly or indirectly from within the serialized object and
implementing the tagging Serializable interface.



Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 11/01/2026 19:03:44

6 Michal Chromiak, Zdzistaw f.ojewski

2. What is the time efficiency regarding stream cryptography using sym-

metric algorithms?

3. What are the differences comparing symmetric and asymmetric

cryptography algorithm implementations in Java?

This paper does not intend to discuss the accuracy of the time measurement.
Even though it is possible that some discrepancy will occur, it is believed that
this will be eliminated by more precise hardware timing sources that will
hopefully be soon designed and utilized by operating system calls.

2. Testing environment

The choice was the linux because of the Windows JVMecalls to
System.nanoTime() is implemented using the QueryPerformanceCounterQuery

PerformanceFrequency API (if available, else it returns currentTimeMillisx10°).

As its default 10 ms timer interrupt period can be modified by application
programs using the timeBeginPeriod/timeEndPeriod API’s there is no guarantee
that a wanted period will be supported, moreover its accuracy has been
questioned in some reports [2]. The testing procedure for all tests has been
performed on 100 different objects of approx. SKB each. The testing architecture
was as follows:

— Hardware: Intel*Core™ 2 Duo E6600 @ 2.40Ghz, 2GB RAM

— Software: Linux (2.6.23.9-85), Fedora 8, Sun JDK 1.6.0 03

3. Byte distribution in streams

As a security must, the information sent throughout the potentially hostile
environment e.g. the Internet, should be as secure as it is possible regarding the
efficiency aspect. One of the security bases is the distribution of data structure
along the transfer domain (i.e. all possible values of the information byte). At the
basic level, the byte distribution is the issue. That is why in this paper we present
the Java basic stream mechanism analysis.

3.1. The regular stream distribution

To find the distribution of byte values in the transmitted stream an external
class was made. Its purpose was to check each byte of data from the stream and
add it to an appropriate analyzing structure. As an obvious way of representing
the results, is to treat the byte values of a stream as 0 to 255 codes’.

As a number of serialized objects were sent as a stream the statistics
displayed in Figure 1 were obtained.

?Just as it takes place in the case of ASCII codes.



Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 11/01/2026 19:03:44

Stream security particularities in Java 7

=)0 15
®216-31
O3.(32- 47
W4 (48 63)
W5 (64 79)
B6.(80-95]
W7 g6 111)
Hs.[112- 127
W9 (128 143)
B 100144 - 159)
B 11[180 - 175)

W2176 - 19])
/I]:um 207
B 141208 - 229)

0 15.[224 - 239)

B 16.[240 - 255]

y

Fig. 1. The pure secured stream byte distribution

It can be clearly seen that the byte distribution provided is unacceptable
regarding the frequency analysis attacks that can take advantage of this stream
structure. This behaviour is not permanent but the tendency for such a
disproportion holds across multiple tests. From the test results, it can also be

claimed that the majority of the values (i.e. over 80%) from the first group
obtain zero value.

3.2. Entropy provided by cryptographic mechanisms

As the above results for pure stream proves that it appears to be insecure,
some tests have been performed on securing it by using the CipherOutput/
InputStream classes provided by the JCA/JCE architecture. For this purpose the
Bouncy Castle [3] provider has been used. The same tests have been performed
for the streams secured with the DES, TripleDES, Blowfish and AES algorithms
as the most widespread. The acquired results displayed in Figure 2 provided
much more reliable byte distribution regarding the security aspect.

B DESede
Blowtish

BAgs

B DES

=3
i § [
Blowlish
etz
2[5-3  4[E-63  B|80-5  BM2-LT  L4-155  16-18  Mpe-2E3  13)p0-3
0.3 3E-dn 5[M-7 TEe-Z 9 0E-M3 0 2019 l3[92-E7  lsEM-23

Fig. 2. The secured stream byte distribution



Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 11/01/2026 19:03:44

8 Michal Chromiak, Zdzislaw Lojewski

As the figures are not as clearly visible as for the pure stream some statistical
analysis needs to be applied. For the perfect byte distribution, the standard
deviation should be null and each byte value in this case would have the average
value of one out of 256. This of course is just a theory, because the results
(Figure 3) for the encryption of a stream provide much better byte distribution
than the pure stream did, but not to such an extent. Some tests have also been
made on the byte distribution provided by the RSA. Of course, it needs to be
mentioned that the RSA is not a kind of cipher used for a stream cryptography.
Because of its particularities, the length of a message cannot be longer than the
key length. Therefore for the key of 1024 bits the message can be, as in the
examined case, maximum 117 Bytes®. To avoid the byte distribution provided by
the message itself the stream bytes were all zeros. RSA is a cryptosystem used
just for symmetric algorithms key distribution, therefore it is combined with one
of the symmetric ciphers.

11,25 1125 1125 1125 1125
175,39095( 033479 0,33791) 0,32474] 0,30951

Fig. 3. Statistical analysis for byte distribution in an encrypted stream

Apparently, following Figure 4, the byte distribution provided by the RSA
outperforms the symmetric ciphers. This of course, is not conclusive in terms of
choosing the RSA as the stream encryption algorithm* but reveals an interesting
particularity of the RSA cipher.

8 1125
0,07 0329

Fig. 4. Statistical analysis for byte distribution in an encrypted stream

SPKCS#1 uses the high order 11 Bytes of the RSA input to implement its padding scheme (128
B-11B=117B).

“Further tests show that the time efficiency of RSA is outperformed by the symmetric ciphers
in scale of order of magnitude.



Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 11/01/2026 19:03:44

Stream security particularities in Java 9

4. The System.nanoTime()

To measure the time consumption of an algorithm, to some extent, it would
be the best to measure it natively. For that purpose the use of Java Native
Interface would be a must. Although this would be the best for watching the
efficiency of bytecode itself JNI could provide extra overhead to JVM. That is
why the solution provided by System.nanoTime() is considered in this
document.

The System.nanoTime() method according to [4] provides the most precise
available system timer, in nanoseconds. The value returned represents
nanoseconds from some fixed but arbitrary time e.g from boot up or JVM start.
It is also claimed that this method can only be used to measure elapsed time and
is not related to any other notion of system or wall-clock time. Its general issue
is that it only provides nanosecond precision, but not necessarily nanosecond
accuracy.

For this kind of JVM functions, it would be preferable to use the finest
grained clock possible. For that purpose, the POSIX clock gettime() with the
CLOCK MONOTONIC, as described in [5] and [2], seems to be the right
choice. As it is known that the clock gettime() is supported in current linux
libraries and also according to [6] sufficiently recent versions of GNU libc and
the Linux kernel supports the CLOCK_MONOTONIC clock as well. As this
feature is not supported in most distributions, including the testing environment,
the System.nanoTime() call relies on alternative, after [7], function
gettimeofday()’ as described in [8], that works with microseconds accuracy
depending on a system.

Regarding this and as a conclusion from discussion [2], we have chosen the
System.nanoTime() to manage with most of the tests workload, on measuring
the elapsed times. What also needs to be mentioned is that the disk utilization®
was not participating in the testing procedures.

5. The time efficiency of symmetric algorithms

The tests performed on time consumption of each symmetric algorithm were
all based on the same scheme. Every encryption-decryption phaze was divided
into some partial procedures (i.e. their times) evolved from the cryptographic
and JCA/JCE architecture. Each test consists of 100’ repetitions of each partial
procedure of the entire process.

> It has been found that the native operation executes the following: nanoseconds = (seconds *
1000000) + microseconds) * 1000 As the strace analyze and the function code [9] has been
analyzed.

®As a potential source of overhead.

7 The scheme modified to 1000 repetition model did not change the general tendency.



Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 11/01/2026 19:03:44

10 Michat Chromiak, Zdzistaw Lojewski

5.1. The time efficiency — results

As the tests were performed the following results have been obtained.

700000

BOOOOO

B Key Generation

W IV Generation

[ Cipher object gen.

@ Cipher object
initialization

W Stream Prepare

[] ENCRYPTION

@ DEC Cipher object
gEI].

BOO000

ey Generation
\V Generation
ipher object gen.

ipher object initializaton

ADOO0D

00000

EC Cipher object gen
EC Cipher object initalization
EC Stream Prepare
ECRYPTION

B DEC Cipher object
initialization

B DEC Stream Prepare

B DECRYPTION

200000

Y

7

Fig. 5. Time consumption of the DES algorithm

There is only one particularity in the time efficiency of the first two
algorithms that can also be found in all of the tested algorithms, meaning the
time spent on key generation. It can be clearly seen that it is the main factor that
decides for the entire process time. It might not be unexpected regarding the fact
that it includes the generation of secure random, but it is important to note how
significant it is regarding the entire process®.

647703 72] soo0c0 |

W Kev Generation
® IV Generation

Cipher object initialization : 0 Cclilp?‘Ier °t’“i gen.
@ Cipher objec
fream Prepare ! inﬁiaiizan}cn
NCRYPTION W Stream Prepare
EC Cipher object gen. : [ ENCRYPTION
EC Cipher object initialization . R 2RC ipher qect

B DEC Cipher object
initialization

W DEC Stream Prepare

DECRYPTION

Fig. 6. Time consumption of the Triple DES algorithm

o 4

All of the tests on symmetric algorithms lead to the similar pattern of time
consumption. One more regularity can be noticed regarding the Blowfish
algorithm apart from the time consumed for key generation. The time spent on

%It will be essential for the comparison to the ECC.



Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 11/01/2026 19:03:44

Stream security particularities in Java 11

cipher object’s initialization took relatively more time than other activities
during the entire process. But this does not disturb the general tendency.

700000

50000

ey Generation ® Kev Generation
V Generation : 500000 | IV Generation
ipher object gen, ! [ Cipher abject gen,
Cipher objectinitialization

W Cipher object
400000 initialization
B Stream Prepare
[ ENCRYPTION
W DEC Cipher object
gen,

300000

EC Cipher object gen
EC Cipher object initialization

EC Steam Prepare 3] 200000 B DEC Cipher object
ECRYPTION initialization
W DEC Stream Prepare
- / [ DECRYPTION

>
o

Fig. 7. Time consumption of the Blowfish algorithm

roouoo

M Key Generation

[ IV Generation

0 cipher abject qen.

] Cipher abject
initialization

B Stream Prepare

O ENCRYPTION

W DEC Cipher object
an,

DEC Cipher object
initialization

W DEC Stream Prepare

/ [ DECRYPTION
100000
o

Fig. 8. Time consumption of the AES algorithm

6. Symmetric and Asymmetric algorithms comparison

The same testing procedure was applied to the RSA asymmetric
cryptosystem. The results presented in Figure 9 display however, some
interesting particularity that comes from the RSA algorithmic characteristic.
From the theory of the RSA we know that the private exponent of the private
key is much larger than the public exponent. Therefore using the RSA private
key causes slower computations than the public key.



Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 11/01/2026 19:03:44

12 Michal Chromiak, Zdzistaw f.ojewski

25000000

WKey Generation

[l IV Generation

[ Cipher object gen.

[ cipher object
initialization

B Stream Prepare

0 ENCRYPTION

B OEC Cipher object
gen.

ey Generaton

V Generation
ipher object gen
Cipher object inialization
Sweam Prepare
=NCRYPTION

DEC Cipher object gen
DEC Cipher objec! iniialization

DEC Stream Prepare
DECRYPTION

[l DEC Cipher object
initialization

W DEC Stream Prepare

5000000 " EUECRYPTION

Fig. 9. Time consumption of the RSA algorithm

7. Elliptic Curve Cryptography

Following [10] and key length (Figure 10) it must be claimed that combining
it with the results of performed tests ECC becomes the most suitable scheme for
securing data.

80 163 1024
112 233 2048
128 283 3072
192 409 7680
256 571 15360

Fig. 10. Key length comparison for different cryptosystems with the same strength

As the time of key generation in the tested algorithms became the main
factor; reducing it while retaining the same cryptographic strength would be the
optimal solution.

Conclusions

Along the performed tests it has been shown that regarding the symmetric
algorithms comparison, the AES algorithm with this Java implementation
provider, has outperformed other algorithms in terms of better byte distribution
and also presented that time efficiency has given better results.

Thanks to preserving RSA keys’ size disproportion particularity in Java
implementation, it can be used for further project work to allow ciphering on
clients with limited computational resources. Thanks to numbers achieved from
those tests, it can be confirmed that the RSA is also much slower comparing to
the symmetric ciphers.



Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 11/01/2026 19:03:44

Stream security particularities in Java 13

Further work needs to be done on promising comparison for asymmetric

cryptosystems with the NIST results for ECC; ECC advantage needs to be
confirmed regarding the Java ECC architecture and implementation.

(1]

(2]
(3]
(4]

(5]

(6]
(7]
(8]
(]

(10]

References

Lamprecht C., et al., Investigating the efficiency of cryptographic algorithms in online
transactions. School of Computing Science, University of Newcastle upon Tyne, UK I. J. of
Simulation, 7(2).
http://blogs.sun.com/dholmes/entry/inside the hotspot vim clocks, Evaluation
http://www.bouncycastle.org/
Sun Microsystems, Inc. (Santa Clara, CA, USA), JavaTMPlatform, Standard Edition 6 API
Specification. Copyright 2006 Sun Microsystems, Inc. All rights reserved. available on-line
at: http://java.sun.com/javase/6/docs/api/java/lang/System.html
http://mia.ece.uic.edu/~papers/WWW/books/posix4/DOCU 007.HTM; The Department of
Electrical and Computer Engineering,University of Illinois
http://ibm5.ma.utexas.edu/cgi-bin/man-cgi?clock gettime+3
http://bugs.sun.com/bugdatabase/view bug.do?bug id=6298653
http://linux.die.net/man/2/gettimeofday
http:/Ixr.linux.no/linux-bk+v2.6.10/arch/i386/kernel/time.c#L.94
http://csrc.nist.gov/publications/nistpubs/800-57/sp800-57-Part1-revised2 Mar08-2007.pdf;
National Institute of Standards and Technology, Computer Security Division, Computer
Security Resource Center Recommendation for Key Management Part 1: General (Revised),
March 2007

[11] Sun Microsystems, Inc. (Santa Clara, CA, USA), JavaTMCryptography Architecture API

Specification & Reference. available on-line at: http://java.sun.com, Last Modified: 25 July
2004.


http://www.tcpdf.org

