Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 11/01/2026 21:00:55

Annales UMCS

o8 St Informatica
2 Annales UMCS Informatica AI VIII, 2 (2008) 75-87 . .
Lublin-Polonia

DOI: 10.2478/v10065-008-0026-0 -
v Sectio Al

08

&
®

ERS
NWERSY
<
~ 5
QI’VSM o ao™

http://www.annales.umcs.lublin.pl/

Test scenarios generation for a class of processes
defined in the BPEL language

Krzysztof Sapiecha, Damian Grela™

Department of Computer Science, Cracow University of Technology, Warszawska 24,
31-155 Krakow, Poland

Abstract

The main purpose of this research is adaptation of critical paths method [1] to the processes
defined in BPEL. The critical path method is the specification based and simulation oriented
method. In the paper it is show that under some assumptions the BPEL process may be
considered as an embedded system, in which tasks are like services and communication between
tasks is like coordination of the services according to the task graph of the system. An example

is given where a set of test scenarios is presented.

1. Introduction

BPEL4WS (Business Process Execution Language for Web Services) makes
it possible to implement business process as an orchestration or a choreography
of services distributed over the Web [2]. The main idea of the orchestration is
a central coordinator, which invokes individual services of business process. In
the choreography services invoke each other [3].

A definition of the process in BPEL is a composition of simple activities that
combine and manage Web Services. An implementation of the definition can
be done almost automatically, due to generally available CASE tools [3]. On

*Corresponding author: e-mail address: dgrela@pk.edu.pl

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl

Data: 11/01/2026 21:00:55
76 Krzysztof Sapiecha, Damian Grela

the other hand a validation of such designed and implemented process is still
under discussion.

More or less effective methods for validation of computer systems have al-
ready been developed [4, 5, 6, 7, 8]. They fall into two categories: specification
based and implementation based. In the first case a system is validated against
specification requirements [8]. In the other one a set of test scenarios is gener-
ated to exercise implementation of the system or a model of an implementation
of the system is created and some interesting features of the model are formally
proved. Specification based validation makes it possible to detect design errors
very early in the multi level procedure of implementation of the system. The
most popular technique of specification based validation is simulation [4]. In
the case of simulation test scenarios should be generated for validation of the
system against temporal and functional requirements. An advantage of the sim-
ulation is that the generated validation tests may be used on different levels of
designing of the system. However, nowadays systems are very complex. There-
fore, the problem of generation of practical and useful test scenarios (providing
correct validation result in acceptable time) is of the most significant.

In[4] a test scenario set validating a system against functional requirements is
automatically generated on the basis of automaton modelling of these require-
ments. For the same purpose a genetic algorithm is used in [6]. In [7] there
is used the modified ATPG algorithm to validate functionality of the systems
described on RT-level. In [1] description of tools allowing automatic test gen-
eration for the systems in which functional requirements specification includes
correct input values is given. The situation is a like, as far as validation of
the system against temporal requirements is concerned. An approach to au-
tomatic test scenarios generation for the embedded system against temporal
requirements (critical paths method) is presented in [9]. In [10] this method is
extended to both temporal and functional requirements. In the sequel, in [1]
an improved method for generation reduced set of test scenarios for validation
of both temporal and functional requirements is presented.

The main purpose of this research is adaptation of critical paths method [1]
to the processes defined in BPEL. The critical path method is the specification
based and simulation oriented method. In the paper it is shown that under
some assumptions the BPEL process may be considered as an embedded sys-
tem, in which tasks are like services and communication between tasks is like
coordination of the services according to the task graph of the system.

The problem is stated in section 2. Section 3 outlines adaptation of the
critical path method for BPEL processes. An example is given where a set of
test scenarios is generated. Section 4 presents conclusions.

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 11/01/2026 21:00:55

Test scenarios generation for a class of processes . .. 77

2. Problem statement

For implementation of business processes recently the orchestration of Web
Services has been used more often than their choreography. It relies on
a central coordinator (Fig. 1a) which interacts with service receivers and service
suppliers. It receives data, sometimes processes them, and distributes results.
This is the way how all temporal and functional requirements for a process are
met.

A process may use a data flow model (service provider waits for all necessary
data and then executes the service and returns all results to a service caller)
or may be scheduled (both starting and ending points of the service are fixed)
according to an agreement established between the service caller and the service
provider at the beginning of their cooperation. Usually a process as well as
providers and recipients of services obey less or more critical time constraints.
Service provider provides services for many service callers which in general do
not like to wait. On the other hand, a service caller has its own temporal
requirements that synchronize activities of the services. Hence, using scheduled
services is advantageous for both service receiver and service provider. That is
why such a model of cooperation between service provider and service caller is
assumed in the paper. This, in turn, means that the validated BPEL processes
meet the following requirements:

— the process is executed according to the schedule settled together by services
providers and services callers,

— the process is functionally closed (cooperates with definite, invariable and
finished number of services),

— the process has easily attainable initial state,

— for every service the time from invoking the service up to getting results of
the service is steady.

The BPEL process which meets all described requirements is like an em-
bedded system with closed functionality [9], in which tasks are like services
and communication between tasks (data flow) is supervised by a coordinator
acting according to a task graph of the system [10]. Additionally, tasks are
distributed among various servers. On the basis of this analogy it might be
possible to generate test scenarios for validation of the BPEL process against
both functional and temporal requirements adapting a method developed for
embedded systems. In the next section of the paper it will be shown that the
critical path method introduced in [1] can be used for this purpose.

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl

Data: 11/01/2026 21:00:55
78 Krzysztof Sapiecha, Damian Grela

(a)

Web Service

Web Service |«—— | coordinator | —— | Web Service

Web Service

(b)

Secretary

service

Advisor
service

Planning
Distribution
of Orders
coordinator
PDO

Broker

service

Manager
service

Stores
service

Fig. 1. Service orchestration (a) and its example — a process for planning distribution
of orders (b)

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 11/01/2026 21:00:55

Test scenarios generation for a class of processes . .. 79

3. Adaptation of the critical path method to BPEL processes

As in [1] the procedure of generation of a set of test scenarios for the BPEL
process consists of the following steps:

1. formalization of specification requirements for the process with the help of
SCR (Software Cost Reduction [5]) notation

2. creation of a model of the process; to this end so-called Functional Require-
ments Graph (FRG) is used,

3. derivation of Test Scenarios Tree (TST) from FRG, and finally

4. generation of a set of test scenarios from TST and FRG.

Specification requirements contain both functional and temporal require-
ments. A set of test scenarios generated with the help of the critical path
method guarantees that each functional path (associated with functional re-
quirement) and each critical path (associated with temporal constraint) are
checked at least once. For the BPEL process functional requirements con-
cern services and their coordination. A schedule of the process results in tem-
poral constraints. The constraints define the minimum and maximum time
(tmin, tmax) When a service has to be finished (actually it determines calls to
providers).

A simple example of the process for Planning Distribution of Orders among
stores (PDO) will serve as an illustration of the procedure. Theory and details
of the procedure can be found in [1]. Table 1 contains functional requirements
for the process. Temporal constraints will be given later on.

Table 1.

Rig Description

Broker sends orders (a). Secretary registers the plan (b). Advisor plans a distribution of the
orders among stores (c). Manager sends his comments (d) or accepts the plan (e). Advisor
revises the plan (c). Stores send comments to Advisor (f) or accept the plan (g). Advisor
publishes the plan, Broker accepts the plan (h).

‘When the plan is published, it is sent to Broker (a). When Broker accepts the plan it is removed
from the system (b).

When orders arrive from Broker they are sent to Secretary (a). When Secretary registers the

Rs plan its previous version is removed from the system (b).

When Secretary registers the plan or when Manager or Stores send comments to the plan it is
Ry sent to Advisor (a). When the plan is sent to Manager its previous version is removed from the
system (b).

When the plan is finished by Advisor it is sent to Manager (a). When Manager accepts (b) or

R . . Lo
3 comments (c) the plan its previous version is removed from the system.

When the plan is accepted by Manager it is sent to Stores (a). When Stores accept (b) or

R . . Lo
° comment (c¢) the plan its previous version is removed from the system.

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl

Data: 11/01/2026 21:00:55
80 Krzysztof Sapiecha, Damian Grela

The process runs on a system of servers and uses choreography of Web Ser-
vices. These are as follows: Broker, Secretary, Advisor, Manager, Stores. Each
of the services is accessible on a different server and the whole process of plan-
ning is coordinated through the central coordinator.

The SCR notation is used to formalise functional requirements for a process.
It enables description of a process in category of events calling out changes
in its states. Each activity of a process is described in the SCR notation as
a sequence of actions (e.g. queries to providers which will be formulated pre-
cisely later during designing of the process) which begins with appearing definite
events and ends with obtaining results.

Using the SCR notation for description of BPEL process we should introduce
each of providers as a pair of ports, input and output. Hence, the process (the
coordinator) is going to have five input ports and five output ports according
to the services (Table 2).

Table 2.

Nr Name Type Value

1 Broker_In In [None, Data]
2 Secretary_In In [None, Data]
3 Advisor_In In [None, Data]
4 Manager_In In [None, Yes, No]
5 Stores_In In [None, Yes, No]
6 Broker_Out Out [None, Data]
7 Secretary_Out Out [None, Data]
8 Advisor_Out Out [None, Data]
9 Manager_Out Out [None, Data]
10 Stores_Out Out [None, Data]

The plan can be in one of the following six states: Empty, Registered, Dis-
tributed, Revised, Commented and Accepted. A variable State corresponding
to the current state of the plan is introduced. A state of the process is deter-
mined by a value of variable State and values of each of its output ports. Those
variables are presented in Table 3. The process starts when State is Empty and
on Broker_ In data appear (this initial state is easily attainable).

After transformation onto the SCR notation the functional requirements are
given in Tables 4 and 5. The Tables show how each of the variables reacts
for each of the events (Table 4 refers to variable State, Table 5 refers to the
remaining 5 variables). Every row of the tables corresponds to some functional
requirement (RId) and in the sequel to an execution one of the tasks (774) for
Coordinator. All tasks executed by Coordinator usually cooperate with Web
Services (e.g. set values of output ports). It is important to emphasize that

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 11/01/2026 21:00:55

Test scenarios generation for a class of processes ... 81
Table 3.
Nr Name Value Starting Type
value
[Empty, Registered, Distributed,
! State Revised, Commented, Accepted] Empty | Process state
2 Broker [None, Data] None Output
3 Secretary [None, Data] None Output
4 Advisor [None, Data] None Output
5 Manager [None, Data] None Output
6 Stores [None, Data] None Output

not the Web Services (which by assumption are valid because they have been
validated in sites of providers) but only Coordinator and its tasks are validated
(like task graph in the case of embedded systems).

The first row of Table 4 describes the initial state of PDO process and corre-
sponds to requirement Rla from Table 1 (”Broker sends orders”). To meet this
All tasks
of Coordinator (7'S,) which changes a state of the plan are given in the last

requirement Coordinator (Fig. 1b) executes one of its tasks (7'S,).

column of Table 4.

Table 4.
Old State New State Event Ryg Tig

Empty Registered Broker_In=Data Rla TS,
Registered Distributed Secretary_In=Data R1b TSy
Distributed Revised Advisor_In=Data Rlc TS,
Revised Distributed Manager_In =No R1d TSp
Revised Commented Manager_In =Yes Rle TS.
Commented Distributed Stores_In=No RI1f TS4s
Commented Accepted Stores_In=Yes Rlg TS,

Secretary=None &

Advisor=None &
Accepted Empty Manager=None & R1h TS,

Stores=None

The tasks implemented in the PDO process are as follows:

TS — change a state of the plan, defined in Table 4
TFB — forward the plan to Broker
TFS — forward the plan to Secretary
TFA — forward the plan to Advisor
TFM - forward the plan to Manager
TFT — forward the plan to Stores.
The last 5 tasks are defined in Table 5.

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl

Data: 11/01/2026 21:00:55
82 Krzysztof Sapiecha, Damian Grela

Table 5.

Variable State Value Event Ryg Ty
Broker Accepted Data InMode R2a TFB,,
Broker None None InMode R2b TFBys¢

Secretary Registered Data InMode R3a TFESon

Secretary Distributed None InMode R3b TFSys
Advisor Distributed Data InMode R4a TFA,.
Advisor Revised None InMode R4b TFA 5

Manager Revised Data InMode R5a TFM,,

Manager Commented None InMode R5b TFM s

Manager Distributed None InMode R5c¢ TFM s
Stores Commented Data InMode R6a TFT,.
Stores Accepted None InMode R6b TFT o
Stores Distributed None InMode R6¢c TFT o

For reactive embedded systems temporal constraints are put on a system
and its environment [11]. Such constraints define the period of time, given as
a pair (tmin,tmax), in which the system has to finish processing certain data.
Processing of the data means an execution of certain tasks. Therefore, such
kind of constraint concerns the time of execution of certain subset of tasks.
Similarly, temporal constraint in the case of the BPEL process also defines for
Coordinator the time of execution of certain subset of tasks and in the sequel
the time of execution of certain services.

Table 6 contains temporal constraints for the PDO process written down with
the SCR notation [9].

Table 6.
Cu | Type | (tmin, tmax) | Tia Conditions
C, P (0, 1d) - { @T(Broker_In=Data)} 2> { @T(Secretary=Data)}
C, P (0, 2d) - { @T(Secretary=Data)} 2 {@T(Advisor=Data)}
() P (0, 3d) - { @T(Advisor=Data)} > {@T(Manager=Data)}
C, P (0, 4d) - { @T(Broker=Data)} - { @T(Broker=None)}

The BPEL process is validated against both functional and temporal require-
ments. The process is valid when all specification requirements are met. A set
of test scenarios should check each of the requirements at least once [1]. If
a requirement is not met then the process should behave incorrectly when a
test scenario corresponding to the requirement is applied to the process. A test
scenario is defined by the state of the process and states of its input ports.

Generation of test scenarios begins with developing a model of a process. To
this end Functional Requirements Graph (FRG) [4, 9] is used. FRG models the
process with the help of an automaton (idea very popular as far as generation
of tests is concerned, e.g. [4, 6]). States of the automaton correspond to states

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 11/01/2026 21:00:55

Test scenarios generation for a class of processes . .. 83

of the process (in the example a state is described by 6 variables). A transition
between two states is labelled with a pair of events: initiating the transition
and finishing the transition (initiating the query and receiving the response).
The model is automatically generated from formal specification of requirements
(from the SCR notation) and information about services.

The model of PDO process is shown in Fig. 2.

Fig. 2. FRG for the PDO process

For readability there are no values of variables describing states of the pro-
cess (nodes of FRG) and labels describing transitions between states (edges
of the graph). These are given in Tables 7 and 8. Moreover, in Table 8 for
every transition there are shown identifiers of tested functional and temporal

requirements.
Table 7.
Value
Node -

State Broker Secretary | Advisor | Manager Stores
0 Empty None None None None None
1 Registered None Data None None None
2 Distributed None None Data None None
3 Revised None None None Data None
4 Commented None None None None Data
5 Accepted Data None None None None

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl

Datar 11/01/2026 21:00:5%4

Krzysztof Sapiecha, Damian Grela

Table 8.
Tran- Events Identifiers
sition Initiating Finishing Ryg Cy Ty
0->1| Broker In=Data Secretary=Data Rla, R3a C TS,, TES,n
_ Secretary=None &
1 -> 2| Secretary_In=Data Advisor=Data R1b, R3b, R4a | C, TSy, TFSy, TFA,,
. ... | Advisor=None & . TS,, TFA s,
2 ->3| Advisor_In=Data Manager=Data Rlc, R4b, R5a | C3 TEM,,
_ Manager=None & TSa2, TFMogr,
3 ->2| Manager_In=No Advisor=Data R1d, R5¢c, R4a TFA,,
_ Manager=None & TS., TFM g,
3 ->4| Manager_In=Yes Stores=Data Rle, R5b, R6a TFT,,
_ Stores=None & TSa3, TFTos,
4 ->2 Stores_In=No Advisor=Data R1f, R6¢c, R4a TFA,,
Stores=None &
4 ->5| Stores_In=Yes Broker=Data Rlg, R6b, R2a TS,, TFT s, TFB,,
Secretary=None &
Advisor=None &
5->0 Manager=None & Broker=None R1h, R2b Cy TS., TFBs
Stores=None

From the first row of Table 8 it results that if the PDO process is in state
0 and on port Broker_ In Data appear then the process goes to state 1 and
transfers Data onto variable Secretary. Moreover, going through this transition
(0— > 1) the process checks requirements Rla and R3a, and tasks T'S, and
TFS,,. Binding specification requirements with transitions in FRG is the main
idea of the critical paths method [1].

Next, Test Scenarios Tree (TST) is derived from FRG. Starting with the
initial state of the process consecutive critical paths (temporal requirements)
and functional paths (functional requirements) are joined to TST. A path may
be omitted when it is covered by TST. This results in reduction of the length
of the set of test scenarios. Each branch of TST describes different behavior of
the process. An algorithm for generation the TST is given in [12].

TST for the PDO process is shown in Fig. 3. State 0 is the initial state of
the PDO process. Nodes labelled Crqv or Cjq " respectively begin or finish
critical path associated with the temporal constraint Cj4 (Table 6). It is seen
that all critical paths (all temporal requirements) are included (are checked)
into (along) TST. Sub-branch 3— > 4— > 2 is added so that all functional
paths are also included.

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl

Data: 11/01/2026 21:00:55

Test scenarios generation for a class of processes ...

85

o
(? C\ Cov
(? M, Cov

(O

Cyv

7

O D
Y
&

©cr

(OFS

Fig. 3. TST for the PDO process

A single branch of TST determines one test scenario (TS). Each TS checks
different functional requirements (TSF) along with their temporal constraints

(TSC), if any.

Table 9 presents two test scenarios generated for the PDO process.
first column of Table 9 (TSF) shows the events (initiating/finishing) defining
a test. The second column of Table 9 (T'SC) shows symbolically written down
moments of time (¢;/¢;) in which a finishing event should appear. Enumeration

of execution times for services is also given.

Table 9.
TSI
TSC1
TSE ti/ti [Cld] ti'ti € (tmina tmax)
Broker_In=Data / .
Secrefary=Data tl/ 2 [C1]: t2-t1 € (0,1d)
Secretary_In=Data / .
Secretary=None & Advisor=Data B/ [C2]: 1443 € (0,2d)
Adyvisor_In=Data / .
Advisor=None & Manager=Data B/16 [C3]: 645 < (0,3d)
Manager_In=Yes / 7/ 18
Manager=None & Stores=Data
Stores_In=Yes /
Broker=Data & Stores=None © /0
/ Broker=None t11/t12| [C4]:t12-t11 € (0,4d)

The

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl

Data: 11/01/2026 21:00:55
86 Krzysztof Sapiecha, Damian Grela

TS2

TSC2
t; / t [Cid]: ti-ti € (tmins tmax)

t1/t2 | [CI]: 2-t] € (0,1d)

TSF2

Broker In=Data /
Secretary=Data
Secretary_In=Data /
Secretary=None & Advisor=Data
Advisor_In=Data /
Advisor=None & Manager=Data
Manager_In=No /
Advisor=Data & Manager=None
Advisor_In=Data /
Advisor=None & Manager=Data
Manager_In=Yes /
Manager=None & Stores=Data
Stores_In=No/
Advisor=Data & Stores=None

t3/t4 | [C2]: t4-3 (0,2d)

t5/t6 | [C3]: t6-t5 e (0,3d)

t7/1t8

t5/t6 | [C3]: t6-t5 e (0,3d)

t7/18

t9 /10

TS1 covers the branch 0— > 1— > 2— > 3— > 4— > 5— > 0, and TS2 the
branch 0— > 1— > 2— > 3— > 2— > 3— > 4— > 2 in TST. A set of algorithms
for generation of reduced sets of TSi is given in [13].

4. Conclusions

An approach to generation of a set of test scenarios from specification re-
quirements which was presented in the paper is simple and easy for application
in practice. Human task consists of writing down specification requirements
for the BPEL process in the SCR notation, only. All further calculations are
automated [12].

The adaptation of the critical path method which was introduced here is
restricted to a subclass of BPEL processes. However, if the process uses a service
accessible in several versions (uses this version which has all necessary data
at present) or a service is accessible on several servers with various efficiency
(uses this server which is not occupied at present) then each of such services
can be replaced by a subset of functionally equivalent services that meet the
restrictions of the method. This complicates the model of the process and
lengthens calculations, but does not lever up correctness of the method. Human
tasks in Web Services may require special treatment but this could be taken into
consideration when a schedule of the process is established by service providers
and service callers.

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 11/01/2026 21:00:55

Test scenarios generation for a class of processes ... 87

A set of test scenarios for the example considered in the paper contains only
15 stimuli including initialization. It is very concise but all the requirements
(functional and temporal) are checked at least once.

References

[1] Strug J., Sapiecha K., Test Scenarios Generaion for Reactive Embedded Systems, Real-
Time Systems, WKL, (2005) 241, in Polish.

[2] Zakrzewicz M., Introducing to Web Services: SOAP, WSDL & UDDI technologies, X111
Semunarium PLOUG (2006), in Polish.

[3] Zakrzewicz M., Business applications implementation at WS-BPEL technology, XIII Se-
munarium PLOUG (2006), in Polish.

[4] Cunning S., Rozenblit J. W., Automating Test Case Generation for Requirements Speci-
fication for Realtime Embedded Systems, Proc. of the 1999 IEEE SMC’99 (1999).

[5] Heitmeyer C., Kirby J., Labaw B., The SCR Method for Formally Specifying, Verifying
and Validating Requirements: Tool Support, Proc. of the International Conference on
Software Engineering (1997).

[6] Lajolo M., Lavagno L., Rebaudengo M., Automatic Test Bench Generation for
Simulation-based Validation, Proc. of the 8th CODES (2000).

[7] Zhang L., Hsiao M., Automatic Design Validation Framework for HDL Descriptions via
RTL ATPG, Test Symposium, 2003. ATS 2003. 12th Asian (2003).

[8] Dalal S., Jain A., Patton G., Rathi M., Seymour P., AETGSM Web: A Web Based
Service for AutomaticEfficient Test Generation from Functional Requirements, Proc. Of
the 2nd IEEE Workshop on Industrial Strenght Formal Specification Techniques (1998).

[9] Strug J., Deniziak S., Sapiecha K., Validation of Reactive Embedded Systems against
Temporal Requirements, Proc. of the 18th IEEE ECBS, Brno (2004) 152.

[10] Strug J., Deniziak S., Sapiecha K., Validation of Reactive Embedded Systems against
Specification Requirements, Annales Informatica (2004).

[11] Dasdan A., Ramanathan D., Gupta R. K., Rate Derivation and Its Applications to Re-
active, Real-time Embedded Systems, Proc. of the 35th Design Automation Conf. (1998).

[12] Sapiecha K., Strug J., Maksym P., The Generator of Test Scenarios for validation of reac-
tive embedded systems, Technical Journal of Cracow University of Technology - Computer
Science b.1-1, in Polish.

[13] Strug J., Automatic test scenarios generation for valitation of reactive embedded system,
Doctor thesis, Warsaw University of Technology (2007), in Polish.

http://www.tcpdf.org

