
Annales UMCS Informatica AI VIII, 2 (2008) 89–96

DOI: 10.2478/v10065-008-0027-z

Hierarchical graph transformations with meta-rules

Wojciech Palacz∗

Department of Computer Design and Graphics, Faculty of Physics, Astronomy and

Applied Computer Science, Jagiellonian University,

ul. Reymonta 4, 30-059 Kraków, Poland

Abstract

This paper is concerned with hierarchical graph models and graph transformation rules, specif-

ically with the problem of transforming a part of graph which may contain subordinated nodes

and edges. Meta-rules are proposed as a formal way of representing transformations which

remove or duplicate a node along with its contents. The paper discusses the behaviour of

meta-rules when applied to different types of hierarchical graphs, possible failure cases, and

concludes by introducing a type of hierarchical graphs in which meta-rules can always be

successfully expanded.

1. Introduction

Our research group is interested in computer support systems for the prelim-

inary phase of the design process. In this phase, the designer works on a fairly

high level of abstraction, considering the decomposition of the whole object into

subcomponents. Hand–drawn sketches similar to the one displayed in Fig. 1

are traditionally used to capture design decisions.

∗e-mail address: wojciech.palacz@uj.edu.pl

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 13/01/2026 07:13:27

UM
CS



90 Wojciech Palacz

Fig. 1. Structural model of a house

In order to store such sketches in computer memory, an appropriate data

model must be utilized. Graphs are the most obvious choice. Our group has

defined over the years several formalized graph models meant for this purpose;

experiences gained suggest that the model used should be hierarchical, so that

it can directly represent hierarchical (sometimes even recursive) nature of real-

world objects. Additionally, used formalism should provide some kind of graph

transformation rules, which allow for automatic generation and modification of

designs.

A generic framework for hierarchical graphs was developed and presented in

[1, 2]. It provides a way for constructing graphs where graph atoms (nodes,

edges, and hyperedges) can be nested inside any other atom, and extends the

well–known double–pushout graph transformation rules so that they can be

applied to the hierarchical graphs.

Our example uses directed edges and labeled nodes; thus, the formal defini-

tion of the hierarchical graphs used by the floor layout design support system

should be as follows:

Definition 1. Graph G is a tuple (V,E, s, t, lab, par), where:

• V and E are the finite and disjoint sets of nodes and edges;

• s : E → V and t : E → V are the edge attachment functions (source and

target);

• lab : V → L is a node labeling function (L is a set of labels);

• par : V ∪ E ∪ {⊥} → V ∪ E ∪ {⊥} is a parent assigning function;

• par(⊥) =⊥, ∀a ∈ V ∪ E ∀k ∈ N+ : park(a) 6= a.

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 13/01/2026 07:13:27

UM
CS



Hierarchical graph transformations with . . . 91

The special symbol ⊥ is used to denote that a given node or edge has no

parent (i.e. is at the top level of the graph). Conditions specified in the defini-

tion ensure acyclicity of the parent function, which means that the parent-child

relations between graph atoms are a tree with ⊥ as its root.

In addition to graphs we also need to define graph morphisms. They are

mappings between two graphs, mapping nodes to nodes and edges to edges

while preserving all their properties (edge attachments, labels, etc.). For graphs

specified by Definition 1, a corresponding morphism definition looks like this:

Definition 2. Morphism between two graphs G and H is a function

f : VG ∪ EG ∪ {⊥} → VH ∪ EH ∪ {⊥}, where:
• ∀v ∈ VG : f(v) ∈ VH , ∀e ∈ EG : f(e) ∈ EH ;

• ∀v ∈ VG : labG(v) = labH(f(v));

• ∀e ∈ EG : f(sG(e)) = sH(f(e)) and f(tG(e)) = tH(f(e));

• ∀a ∈ VG ∪ EG : f(parG(a)) = parH(f(a)).

Morphisms are usually denoted simply as f : G → H. If f is both surjective

and iniective, then f is an isomorphism; in many practical applications two

isomorphic graphs are considered to be the same graph.

It can be demonstrated that graphs from Definition 1 and morphisms from

Definition 2 constitute an algebraic category (see [1] or [2]). Thus, it is possible

to define double–pushout rules. This paper will introduce them in an informal

way; see [3] for the classical definition and exhaustive discussion of their proper-

ties, and [1, 2] for the definition of hierarchical rules and corresponding proofs.

Fig. 2. A double–pushout rule which duplicates a node

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 13/01/2026 07:13:27

UM
CS



92 Wojciech Palacz

A double–pushout rule consists of three graphs (known as the left–hand side,

the interface, and the right–hand side, usually denoted by L, K, R) and two

morphisms. Morphisms (denoted as l : K → L, r : K → R) map the interface

to the left– and right–hand side graphs, respectively. It can be said that the

interface is the intersection of both sides.

Fig. 2 displays an example rule. In order to apply it to the graph presented

in Fig. 1 (let us denote it by G), an occurrence of the left–hand side must be

found in graph G, i.e. a morphism m : L → G must be found (there is exactly

one match possible). Next, atoms present in L but not in K are deleted from

G (in our example there are none), and then atoms present in R but not in K

are added to G (there is one such node). The obtained result graph will contain

a new living room on the 1st floor.

2. Meta–rules

Simple rules can transform only these graph atoms which were matched to

the left–hand side. Operations like removal or duplication of a given node

along with its unknown subordinated nodes and edges are beyond their power.

This is unfortunate, because such operations are often necessary – for example,

a typical user of a design support system for floor layouts will expect to be able

to copy, move and delete rooms along with their contents. Meta–rules are the

proposed solution. They contain markers, which are matched to subordinated

nodes and edges; by deleting or duplicating markers these atoms (unknown in

advance) are deleted or copied.

Definition 3. Graph with markers is a tuple (V,E, s, t, lab, par,mark),

where:

• (V,E, s, t, lab, par) is a graph (see Definition 1);

• mark : V ∪E → PR(M) is a marker assigning function (M is a set of markers,

PR(M) is the set of subsets with repetitions of M).

For a given atom a, mark(a) may be empty. Every graph with markers

can be trivially converted to the corresponding simple graph by discarding the

marker function.

Definition 4. Graph transformation meta–rule consists of three graphs

with markers (L,K,R) and two morphisms (l, r) such that:

• after discarding markers L ← K → R is a transformation rule;

• markL(a) is empty or contains exactly one marker for all a ∈ VL ∪ EL;

• all markers used in L are different;

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 13/01/2026 07:13:27

UM
CS



Hierarchical graph transformations with . . . 93

• markK(a) ⊂ markL(l(a)) for all a ∈ VK ∪ EK ;

• markers used in R must be also present in L.

Fig. 3. A meta-rule for duplicating rooms with their contents

Meta–rules are not applied directly. Instead, their markers are expanded

to obtain derived rule specific to the graph being transformed, and then this

derived rule is applied.

Definition 5. If m : L → G is a morphism matching a meta–rule to

a graph being transformed, and α is a marker nested in an atom a from L,

then expansion set of this marker is defined as exp(α) = ch∗G(chG(m(a)) −
m(chL(a))). Function ch : VG ∪ EG ∪ {⊥} → P (VG ∪ EG) is the children func-

tion, i.e. the inversion of the parent function.

Please note that exp(α) is called ”expansion set”, not ”expansion subgraph”.

A set of nodes and edges from graph G is a subgraph of G if and only if the

following conditions are met:

• if edge e is in exp(α), then s(e) and t(e) are in exp(α);

• if atom a and its ancestor park(a) are in exp(α), then par(a) is in exp(α).

A rule can be derived from a meta–rule if and only if all marker expansion sets

are subgraphs. The derivation algorithm works in a loop, eliminating markers

one by one. While there are markers in L, the following steps are executed:

1. Choose a marker from L – let us assume it is α, nested in atom a.

2. Delete α from L and insert a copy of exp(α) in its place, extend morphism

m with identity function so that atoms of this copy are mapped onto the

original atoms in G.

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 13/01/2026 07:13:27

UM
CS



94 Wojciech Palacz

3. Check if α is present in K. If yes, then it has to be in l−1(a). Replace

it with exp(α), extend morphism l with identity mapping so that newly

inserted copy of exp(α) in K is mapped onto the copy in L.

4. If the condition in the previous step was true, then check R to see if α is

present in r(l−1(a)). If yes, replace it and extend morphism r as in the

previous step.

5. Replace all occurrences of α in R with exp(α), do not modify r.

The correctness of this algorithm can be proved by observing that the results

produced by every step are valid meta–rules; that because of conditions in

Definition 4 eliminating all markers from L means that all markers in K and R

were eliminated also; and that meta–rule without any markers can be considered

equivalent to a simple double–pushout rule.

3. Performance in practical applications

Expression power of meta–rules depends heavily on hierarchical structure of

graph models being transformed. Definition 1 places no constraints on where

atoms can be nested; it would be possible, for example, to create a graph which

has several nodes subordinated to an edge, which, in turn, is nested inside

another edge, which is inside a node. This flexibility is a distinguishing feature

of our hierarchical graphs framework, but it can be overwhelming.

In a given practical application, the models used will usually belong to some

specialized subclass of hierarchical graphs. Our running example is about floor

layouts; as Fig. 1 displays, nodes represent subcomponents of a house, and edges

relations between these components. This means that nodes are containers

and will have other nodes nested inside, in order to represent the structure of

a house. So, hierarchy between nodes mirrors the hierarchy of components in

the object being designed. But what about edges?

There is no obvious answer in their case the programmer who implements

a floor layout design support system may make a somewhat arbitrary decision

about their placement. For example, it would be possible to decide that all

edges should be placed on the top level of a graph, because they don’t play

any role in the hierarchy of house components. Or it could be decided that

each edge should have the same parent as its source node. This decision has

consequences when it comes to transformation rules which modify edges – the

second graph subclass is much easier to work with, because edge and at least

one of the attached nodes are on the same hierarchy level.

The decision about edges influences results produced by meta–rules, too.

Please recall that meta–rules were introduced in order to meet expectations of

users. An average user, when presented with our running example, would say

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 13/01/2026 07:13:27

UM
CS



Hierarchical graph transformations with . . . 95

that duplicated room should contain all subcomponents present in the origi-

nal room, and that the original relations between these components (i.e. the

connection between the video recorder and the TV set) should be also copied.

Some percentage of users would also say that the newly created TV set should

be connected to the antenna, because the old one was.

If edges representing relations are to be copied when applying the meta–

rule from Fig. 3, then they must be included in exp(α), which means that the

”living room” node must be their parent. But the expansion set containing two

nodes (V CR, TV ) and two edges won’t be a subgraph, and we won’t be able

to successfully complete the derivation algorithm. As it turns out, the optimal

case has exp(α) consisting of two nodes and their connecting edge. The derived

rule is displayed in Fig. 4.

Fig. 4. A derived rule

Please note that we have managed to preserve edges representing relations

internal to the expansion subgraph, and omitted edges which were crossing the

boundary of exp(α). It is possible to consistently obtain such results for other

meta–rules and graphs if graphs used have the following properties:

• only nodes may contain subordinated atoms;

• if edge e connects nodes v and w, then par(e) is equal to the closest common

ancestor of v and w.

These two conditions guarantee that all expansion sets will be valid sub-

graphs, which means that it will be always possible to derive a rule. Edges

which connect nodes in exp(α) are included, those which cross the boundary of

exp(α) are not.

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 13/01/2026 07:13:27

UM
CS



96 Wojciech Palacz

Even if derivation is guaranteed to succeed in this graph subclass, the derived

rule may fail to transform the graph. It is a well–known property of double–

pushout rules – they cannot be applied if they delete atoms, and those deletions

would leave some edges or children dangling.

On one hand, meta–rules are more susceptible to dangling edges than simple

rules; unknown node contents represented by markers may be connected to

distant parts of the graph, which would prevent the rule from deleting these

contents. On the other hand, simple rules have no way of dealing with dangling

children, and meta-rules can use markers to represent these children and delete

them en masse.

4. Conclusions

The meta–rules presented in this paper can be used to formally describe

transformations operating on graph nodes along with their (unknown in ad-

vance) contents. Best results can be obtained when graphs being transformed

fulfill specific requirements on atom hierarchy; in such subclass of graphs, de-

rived rules can always be constructed, and will include all edges representing

internal relations between nodes in the same marker expansion set.

The problem of duplicating external relations has not had an elegant solution

so far. Also, meta–rules cannot remove nodes if it leaves some edges dangling

– this is an inherent limitation of the double–pushout graph transformation

approach. These two problems merit further investigation because of their

importance in practical applications.

References

[1] Palacz W., Algebraic hierarchical graph transformation, Journal of Computer and System

Sciences 68(3) (2004).

[2] Palacz W., Hierarchical graphs in computer-aided design systems, Ph.D. thesis, Jagiel-

lonian University, (2006).

[3] Rozenberg G. (ed), Handbook of graph grammars and computing by graph transformation,

Volume 1: foundations, World Scientific Publishing (1997).

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 13/01/2026 07:13:27

UM
CS

Pow
er

ed
 b

y T
CPDF (w

ww.tc
pd

f.o
rg

)

http://www.tcpdf.org

