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Abstract

In this paper modern numerical methods for one-dimensional hyperbolic equations are re-

viewed. Several results of advanced numerical simulations for complex systems are presented.

These results prove that the numerical codes, based on the Godunov–type methods cope very

well with all numerically induced problems.

1. Introduction

The simplest physical phenomena are very often described by complicated

mathematical equations, which cannot be solved analytically and require nu-

merical treatment. The basic idea of computer experiments is to simulate the

physical behavior of complicated natural systems by solving an appropriate

set of mathematical equations that are built on the basis of a physical model.

A typical way for computer simulation is to develop a mathematical model,

perhaps in a series of differential or integral equations and then to transform

them to a discrete form that can be numerically treated. In this way, numerical

simulations attempt to initiate the dynamic behavior of a system and to predict

or calculate subsequent events.

Numerical simulations have emerged as a new branch in physics complement-

ing both experiments and theory. A simulation can sometimes replace a physical
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experiment, although most often a simulation and an experiment are comple-

mentary. Results of scientific experiments are often explained by simulations,

and simulations are often calibrated by experiments. The experiments provide

input for the simulations which are viewed as experimenting with theoretical

models. The feedback of numerical results into theoretical modelling and the

continuous interaction with laboratory experiments and analytical theory make

computing an indispensable tool for science. Therefore, the increase in com-

puting power in both speed and storage has given computational physics its

significance. Improved computer capacity and the solution algorithms them-

selves, have a large effect on the quality of solutions obtained.

Numerical simulations can be used to study the dynamics of complex physical

systems. Although the variety of complex flows that computational fluid dy-

namics can analyse continues to increase, the solutions to much more complex

flows are desired. A numerical model can be used to interpret measurements

and observations, extend existing analytical models into new parameter regimes

and quantitatively test existing theories. That can be done by comparing model

predictions to experimental data.

A goal of this paper is to present modern numerical schemes for solving a set

of hyperbolic partial differential equations. This paper is organized as follows.

A mathematical theory for the linear system of one-dimensional equations is

introduced in the following section. Section 3 presents an extension of this

theory for a system of nonlinear equations. The shock tube problem is discussed

in Sect. 4. Rankine-Hugoniot jump conditions which describe a shock are

presented in Sect. 5. The Riemann problem for the Euler equations is shown

in Sect. 6. Some deficiencies of Godunov-type schemes are discussed in Sect.

7. Numerical simulations of random waves are described in Sect. 8. This paper

ends with conclusions.

2. Linear system of one-dimensional equations

Consider the linear system of equations

u,t +Au,x = 0, (1)

with the initial condition

u(x, t = 0) = u0(x).

Now, both u and A are matrices such as u : R ×R → Rq and A ∈ Rq×q. The

above system is called hyperbolic if a constant matrix A is diagonalizable with

real eigenvalues and the corresponding set of right eigenvectors is complete (c.f.

[1]). If these eigenvalues are distinct for all u(x, t) the system is called strictly
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hyperbolic. That allows us to decompose the matrix A in the following way:

A = RΛR−1, (2)

where:

R = (r1|, r2|, · · · , |rq)
is the matrix of right eigenvectors and

Λ = diag(λ1, λ2, · · · , λq)

is a diagonal matrix of eigenvalues.

From Eq. (2) we get

AR = RΛ.

Hence

Arm = λmrm, m = 1, 2, · · · , q.
From this equation we can obtain the eigenvalues as

det(A− λmI) = 0,

where I is the unit matrix.

The matrix A can be decomposed based on the sign of each eigenvalue λm

A = A+ +A−, A± = RΛ±R−1. (3)

Here Λ+ (Λ−) consists of the positive (negative) parts of each λm only, i. e.

Λ± = diag(λ±), λ+ = max(λm, 0), λ− = min(λm, 0). (4)

2.1. Characteristic variables.

Equation (1) can be solved with the use of characteristic variables

v(x, t) = R−1u(x, t). (5)

From Eq. (1) we obtain then

v,t +Λv,x = 0.

As Λ is diagonal the above matrix equation contains q decoupled scalar equa-

tions which are solved by

vm(x, t) = vm(x− λmt, 0), m = 1, 2, · · · , q.
From Eq. (5) we get

u(x, t) = Rv(x, t)

which is equivalent to

u(x, t) =

q∑

m=1

vm(x, t)rm =

q∑

m=1

vm(x− λmt, 0)rm.
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As a consequence of the fact that u(x, t) depends only on the initial data

vm(x − λmt, 0) at the q points x − λmt. The curves x = x0 + λmt are called

p-characteristics. When A is a constant matrix, p-characteristics are straight

lines.

2.2. Riemann problem for the linear equations.

The characteristic variables are very useful for solving the Riemann problem

u(x, t = 0) =

{
ul for x < 0,

ur for x > 0,

with

ul =

q∑

m=1

vml rm, ur =

q∑

m=1

vmr rm

such that

vm(x, t = 0) =

{
vml for x < 0,

vmr for x > 0.

This implies

vm(x, t) =

{
vml for x− λmt < 0,

vmr for x− λmt > 0.

If we design M(x, t) to be the maximum of m for which x− λmt > 0, then

u(x, t) =

M(x,t)∑

m=1

vmr rm +

q∑

m=M+1

vml rm.

This equation can alternatively be rewritten as follows:

u(x, t) = ul +
∑

λm<x/t

(vmr − vml )rm = ur −
∑

λm>x/t

(vmr − vml )rm.

This solution consists of q waves, which are discontinuities propagating at the

characteristic velocities, λm, m = 1, 2, · · · , q, of the system.

It is noteworthy that the solution of the Riemann problem is self-similar, i.

e. u(x, t) = u(αx, αt) for α > 0.

2.3. The wave propagation method.

We present the wave propagation method that was developed by LeVeque

[2, 3, 4] for a linear hyperbolic system of equations of Eq. (1). Then, the

difference ∆ui, evaluated at the spatial point xi, can be written as

∆ui ≡ ui − ui−1 =

q∑

m=1

αm
i rmi ≡

q∑

m=1

Wm
i , (6)
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Numerical schemes for a system of . . . 39

where Wm
i is the wave, λm

i is its speed and αm
i is the scalar coefficient which

measures a strength of the wave m such that

αi = R−1∆ui.

Let u0
i denote the value at the interface between ui−1 and ui. Then, with the

use of (6) we can write

u0
i − ui−1 =

∑

λm
i <0

Wm
i , ui − u0

i =
∑

λm
i >0

Wm
i . (7)

The flux at the interface can be expressed twofold:

f(u0
i ) = Au0

i = Aui−1 +
∑

λm
i <0

λm
i Wm

i ≡ Aui−1 +A−∆ui, (8)

f(u0
i ) = Au0

i = Aui −
∑

λm
i >0

λm
i Wm

i = Aui −A+∆ui, (9)

where A± is defined by Eq. (3).

Equation (1) can be discretized as

un+1
i = un

i − ∆t

∆x
(fi+1 − fi), (10)

where the flux

fi = f(u0
i ) = Au0

i .

Using Eqs. (8) and (9) for evaluation of fi+1 and fi, respectively, we obtain

fi = f(ui)−A+∆ui, fi+1 = f(ui) +A−∆ui+1. (11)

Equation (10) can now be rewritten as

un+1
i = un

i − ∆t

∆x
(A−∆ui+1 +A+∆ui) ≡ un

i +∆upwind
i . (12)

This scheme is first-order accurate in space and is called the Godunov scheme

(c.f. [5]).

A second-order correction to Eq. (12) can be obtained by altering its right-

hand side as [3, 4]

un+1
i = un

i +∆upwind
i − ∆t

∆x
(f̄i+1 − f̄i),

where the flux

f̄i =
1

2

q∑

m=1

|λm
i |

(
1− ∆t

∆x
|λm

i |
)
W̄m

i .

Here W̄m
i is a limited version of the waveWm

i , obtained upwindly by comparing

Wm
i to Wm

i−1 if λm
i > 0 or to Wm

i+1 if λm
i < 0.
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3. Nonlinear system of one-dimensional equations

3.1. Flux-difference splitting scheme.

We consider the following set of nonlinear equations:

u,t + f,x = 0, (13)

where f is a nonlinear flux. An upwind scheme that is based on flux-difference

splitting decomposes the spatial difference of u and f into linear combinations

of waves (see Eqs. (7) and (11))

∆u ≡ un
i+1 − un

i =
∑
m

αm
i rmi =

∑
m

Wm
i ,

∆f ≡ fni+1 − fni =
∑
m

λm
i αm

i rmi ,

where rmi , αm
i , and λm

i are respectively the right eigenvector, wave strength,

and the eigenvalue of the m-th wave component, evaluated at xi. The symbol

∆ indicates a difference between the neighboring nodal points.

The system of Eq. (13) can be rewritten in the quasilinear form

u,t +A(u)u,x = 0, (14)

where A(u) is the q× q Jacobian matrix which is defined as the derivative of f

with respect to u, so that

df = Adu.

This differential relation can be replaced by its finite-difference analog, namely,

∆f = Ā∆u.

Roe in [6] showed how to construct a mean value Ā such that the above equa-

tion holds exactly for arbitrary pairs of state vectors. For the Roe scheme see

Sec. 6.2.

Fluctuation splitting requires that the matrix Ā be split into its negative and

positive parts, i. e.

Ā = Ā− + Ā+.

For the linear equations A± are defined by Eq. (3). Then,

∆f = Ā−∆u+ Ā+∆u.

This expression can be compared with Eq. (11).

The first-order formula for Eq. (13) becomes

un+1
i = un

i − ∆t

∆x
(fni+1/2 − fni−1/2),
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Numerical schemes for a system of . . . 41

where fni−1/2 and fni+1/2 denote the fluxes on the left and right sides of the

interfaces. We can find three equivalent formulae for the interface flux:

fi+1/2 = fi + Ā−∆u,

fi+1/2 = fi+1 − Ā+∆u,

fi+1/2 =
1

2
(fi + fi+1)− |Ā|∆u, (15)

where |Ā| = Ā+ − Ā−.
In practice Eq. (15) is the best choice because of its symmetry condition.

The flux fi+1/2 is then

fi+1/2 =
1

2
(fi + fi+1 −

∑
m

|λm
i |αm

i rmi ).

As the spectral decomposition of the matrix |Ā| can sometime be cumber-

some, [7] developed the so-called polynomial upwind scheme in which |Ā| was
replaced by Pk(|Ā|), where Pk is a polynomial of degree k.

3.2. Euler equations.

If we introduce the vector u(x, t) such that

u(x, t) =




u1
u2
u3


 =




%(x, t)

%v(x, t)

E(x, t)




and the flux,

f(u) =




%v

%v2 + p

v(E + p)


 =




u2
1
2(3− γ)

u2
2

u1
+ (γ − 1)u3

u2
u1
(γu3 − γ−1

2
u2
2

u1
)


 ,

system of hydrodynamic equations can be written in the form of Eq. (14). Here

% is mas density, v velocity and E a total energy density.

The Jacobian matrix A = f,u is given as

A =




0 1 0

−1
2(3− γ)

u2
2

u2
1

(3− γ)u2
u1

γ − 1

−γ u2u3

u2
1

+ (γ − 1)
u3
2

u3
1

γ u3
u1

− 3
2(γ − 1)

u2
2

u2
1

γ u2
u1


 .

The eigenvalues of this matrix are:

λ1(u) =
u2
u1

− cs, λ2(u) =
u2
u1

, λ3(u) =
u2
u1

+ cs, (16)
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where

cs =

√
γp

%

is the sound speed. These eigenvalues are associated with the fact that the

information from any point in the flow propagates according to the equations

dx

dt
= v (17)

and
dx

dt
= v ± cs. (18)

Equation (17) defines a trajectory T0, along which the entropy s is constant and

which follows a particle path. Variations in the entropy are convected according

to the equation

s,t + vs,x = 0.

Equation (18) defines the Riemann invariants

R± = v ±
∫

γdp

%cs
,

which are constant along the trajectories T± of Eq. (18). These trajectories

follow forward and backward sound waves in the frame moving with the speed

v.

For the Euler equations, we have the following diagonalizable equation:

R−1AR = Λ,

with

R = (r1, r2, r3) =




1 1 1

v − cs v v + cs
H − vcs

v2

2 H + vcs


 ,

where:

H =
E + p

%

is the enthalpy density and E is the total energy density. The matrix Λ is

Λ =




λ1 0 0

0 λ2 0

0 0 λ3


 =




v − cs 0 0

0 v 0

0 0 v + cs


 .

This equation proves that the Euler equations are hyperbolic. From this equa-

tion it follows that infinitesimal changes propagate along characteristics with

speeds v − cs, v, v + cs. Note that at the points where cs = 0 all eigenvalues

coincide and the system is not strictly hyperbolic there.
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It is noteworthy that the right eigenvector

r2(u) =




1
u2
u1
u2
2

2u2
1


 ,

which corresponds to λ2(u), is linearly degenerate. Since

λ2
,u =

(
−u2
u21

,
1

u1
, 0

)

we find that λ2
,u · r2 = 0. So, with r2 neither shocks nor rarefaction waves are

associated but contact discontinuities across which there is a jump in the mass

density. However, the gas pressure and flow velocity are smooth. The other

eigenvalues, r1 and r3, might be either shocks or rarefaction waves, depending

on ul and ur. For the shock wave all state variables are discontinuous. For the

rarefaction wave all state variables are continuous.

While numerically solving the Euler equations, it is important to discuss the

shock tube problem which takes place at every interface of two neighbour cells.

4. The shock tube problem

The shock tube problem can be described as follows. Imagine, there is a thin

tube filled with gas that is initially divided by a membrane into two differ-

ent states. The gas has a higher density and pressure in one half of the tube

than in the other half and the gas is motionless. At t = 0, the membrane is

rapidly removed and the gas is allowed to flow, involving three distinct waves:

a contact discontinuity (c) in the middle and a shock (s) or a rarefaction wave

(r) at the left and the right sides, respectively. For the contact discontinuity

the mass density is discontinuous but the pressure and velocity are continuous.

The rarefaction wave propagates in the opposite direction to the shock, with

the mass density decreasing as the wave passes through. The fluid is accel-

erated abruptly across the shock wave and smoothly through the rarefaction

wave [3]. Four wave patterns are possible: scs, scr, rcs, rcr. The fith pattern,

which consists of a vacuum between two central contact discontinuities that are

surrounded by two rarefaction waves, is theoretically possible but it can never

be realized in practice.

A more complex shock tube problem results for real gases. For instance, for

the van der Waals gas a mixed rarefaction wave can arise [8]. In this wave the

rarefaction fan is connected with a rarefaction shock. A classical compressive

shock and a contact discontinuity propagate toward the low pressure region.

A particular problem corresponding to %l = pl = 3 and %r = pr = 1 is called

the Sod problem [9]. As the pressure on the left, pl, is higher than the right
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one a rightwardly propagating shock wave results. The contact discontinuity

which is easily seen on the mass density profiles propagates rightwardly and

a rarefaction wave moves leftward.

5. Rankine-Hugoniot jump condition

A discontinuity in a solution of Eq. (13) propagates with the speed c which

depends on the jump in the solution u(x, t) across the discontinuity. Suppose

a discontinuity moves from left to right. At time t = t1 the discontinuity is at

the spatial position x = x1 and at t = t2 at the point x = x2, where x1 < x2
and t1 < t2. Let the values of u be given as ul on the left hand side of the

discontinuity and as ur on the right hand side of it. The system of nonlinear

conservation laws of Eq. (13) can be integrated to yield

ul(x2 − x1) = ur(x2 − x1) + f(ul)(t2 − t1)− f(ur)(t2 − t1).

In the limit x2 → x1 and t2 → t1 with

c =
x2 − x1
t2 − t1

we have

c(ur − ul) = f(ur)− f(ul). (19)

This relation between the shock speed c and the states ul and ur is called the

Rankine-Hugoniot jump condition.

For the case of scalar equations with ul and ur we get

c =
f(ur)− f(ul)

ur − ul
.

This equation suggests that any jump is allowed, provided the speed c is related

via the above formula.

For the case of a system of equations, we define vectors [u] ≡ ur − ul and

[f ] ≡ f(ur) − f(ul) while c is a scalar. Now, only certain jumps ur − ul are

allowed, namely those for which vectors [u] and [f ] are parallel to each other.

For a system of linear equations with f(u) = Au, Eq. (19) leads to

c[u] = A[u].

As a consequence of that [u] and c are an eigenvector and the associated eigen-

value of the matrix A, respectively.
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6. The Riemann problem for the Euler equations

In the Riemann problem, an imaginary membrane, which separates two cells

at different states is ruptured, and shock, contact discontinuity, and rarefaction

waves are emitted when these two states interact. In other words the Riemann

solver is based on the idea that two adjacent arbitrary states will evolve into

a set of left- and right-going shocks and rarefactions. With certain assumptions

on the flux function f(u), it is always possible, in principle, to solve the Riemann

problem if the states ul and ur are sufficiently close to each other. The solution

consists of waves travelling with finite velocities. These waves may either be

discontinuous shock waves or smooth rarefaction waves. The procedure for

constructing the solution of a Riemann problem is called a Riemann solver.

The most popular Riemann solver is due to Roe [6].

For the Euler equations, we are looking for the states u∗
l and u∗

r and speeds

c1 < c2 < c3 such that the Rankine-Hugoniot condition of Eq. (19) is satisfied

c1(u
∗
l − ul) = f(u∗

l )− f(ul),

c2(u
∗
r − u∗

l ) = f(u∗
r)− f(u∗

l ),

c3(ur − u∗
r) = f(ur)− f(u∗

r).

It can be shown that c2 = v(u∗
l ) = v(u∗

r), where v is the flow speed [2]. This

means that the second discontinuity propagates with the flow speed λ2 = v.

Moreover, as p(u∗
l ) = p(u∗

r) the pressure is continuous across this discontinu-

ity which is known as contact discontinuity. We remind that across a contact

discontinuity mass density, energy, and entropy are discontinuous, but pressure

and velocity are continuous. Across shocks all dependent variables change dis-

continuously. Shocks propagate with a velocity which is uniquely determined

through the Rankine-Hugoniot relations of Eq. (19). The first discontinuity

would be a shock if the entropy condition is fulfilled

(v − cs)(ul) > c1 > (v − cs)(u
∗
l ).

Otherwise, this jump would be a rarefaction wave. Analogously, the third

discontinuity is a shock if

(v + cs)(u
∗
r) > c3 > (v + cs)(ur).

A solution of the Riemann problem is shown schematically in the x- and

t-coordinates in Fig. 1.

The Riemann problem can be solved exactly with the use of Rankine-Hugoniot

relations across shocks and the isentropic characteristic equations across rar-

efaction waves [10]. Such procedure leads to a nonlinear algebraic equation

(for a flow variable) which can be solved by a Newton iterative method. As
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Fig. 1. Wave structure of the Riemann problem for the one-dimensional Euler

equations

a consequence of that it is clearly a computationally expensive procedure and

therefore different methods are required. These methods are described in the

following part of the monograph.

6.1. The HLL Riemann solver.

A simple approximate Riemann solver was developed by Harten, Lax, and van

Leer in [11]. In this solver (hearafter called HLL) the solution is approximated

by two waves which propagate with their speeds c− and c+ such that they

correspond to the minimum and maximum characteristic speeds of the system

[12]. The wave strengths in the HLL solver are:

W1 = u∗ − ul,

W2 = ur − u∗,

with the middle state u∗ that is chosen to preserve conservation

(c+ − c−)u∗ = c+ur − c−ul − (f(ur)− f(ul)).

Hence the intermediate state is obtained as

u∗ =
1

c+ − c−
[c+ur − c−ul − (f(ur)− f(ul))].

As the Euler equations evolve three distinctive waves, with its speeds given

by Eq. (16), obviously the HLL Riemann solver suffers a drawback and a more

appropriate solver is required.

6.2. The Roe approximate Riemann solver.

We consider a one-dimensional Riemann problem at the cell edge for the

system, given by Eq. (13). On the left side of the edge, there is the state ul,
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on the right side ur. The solution of the Riemann problem for a nonlinear

hyperbolic system like the Euler equations in general needs iterative methods

which are not very efficient. For small jumps at the interfaces, it is sufficient to

use an approximate Riemann solver which is based on a local replacement of

the nonlinear equations by a linear hyperbolic system. To appropriately solve

the Riemann problem, we can use the following linearized equation:

u,t +A(ū)u,x = u,t + Āu,x = 0.

This idea is used in the Roe scheme [6] the keystone of which is the intro-

duction of an average Jacobian Ā, which approximates the Jacobian A = f,u,

associated with the one-dimensional hyperbolic system of conservation laws of

Eq. (13). The average Jacobian (called also the Roe matrix) is such that for any

given left and right pair of states (ul,ur) the so-called Property U is satisfied:

(i) Ā is a linear mapping from the vector space u to the vector space f ;

(ii) Ā(ul,ur) → f,u as ul and ur → u;

(iii) Ā(ul,ur) has real eigenvalues and a complete set of linearly independent

eigenvectors;

(iv) Ā(ur − ul) = fr − fl for any ul and ur.

In the original Roe scheme, the average state ū used to linearize the problem

is not (ul + ur)/2. Instead it is taken so that the property (iv) is satisfied. In

the case of the Euler or MHD equations, the average mass density is given by

%̄ =
√
%l%r

and the rest of flow variables (v, E), which are denoted here by φ, are averaged

as follows (e. g., [13]):

φ̄ =

√
%lφl +

√
%rφr√

%l +
√
%r

.

Once all the averaged variables are obtained, the linearized Riemann problem,

expressed by Eq. (6.2) is considered at each interface. The exact solution of

this approximate problem can be expressed in terms of right eigenvector rm of

Ā as

∆u ≡ ur − ul =

q∑

m=1

αmrm.

Here, q corresponds to the number of eigenvectors. The coefficients αm may

be determined by multiplying the above equation by each left eigenvector lj .

Noting that

ljrm = δjm,

the respective αm is defined by

αm = lm∆u.
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In the above equations the eigenvalues of Ā are the wavespeeds, the right

eigenvectors define the paths taken in phase-space by simple waves. The left

eigenvectors define the characteristic equations.

According to property (iv), with the use of Eq. (6.2) we get the vector flux

increment expressed as a product of ∆u and the corresponding eigenvalues λm,

viz.

∆f = fr − fl =

q∑

m=1

αmλmrm. (20)

6.3. A relaxation Riemann solver.

In the relaxation scheme of Jin and Xin in [14] Eq. (13) is replaced by a system

of coupled equations

u,t + v,x = 0, (21)

v,t +B2u,x =
1

τ
(f(u)− v), (22)

where u, v ∈ Rq and B2 ∈ Rq×q is a positive definite matrix. In the original

scheme this matrix was chosen to be a diagonal matrix with positive diagonal

elements [14]. The relaxation time is denoted by τ > 0.

As τ → 0 from Eq. (22) we get

v → f(u)

if a subcharacteristic condition is satisfied

|λ| ≤ bmax,

where bmax = maxm{bm} is the spectral radius of B with positive eigenvalues

of B such that

bm > 0, m = 1, 2, · · · , q. (23)

In Eq. (6.3) λ is an eigenvalue of the Jacobian matrix f,u.

Equations (21) and (22) can be advanced with the use of the fractional step

method. First the following equations are advanced over that time step ∆t:

u,t + v,x = 0, (24)

v,t +B2u,x = 0.

This step leads to u∗ and v∗ which are updated to un+1 and vn+1 by solving

the equations

u,t = 0, (25)

v,t =
1

τ
(f(u)− v). (26)
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From Eq. (25) we have

un+1 = u∗.
Equation (26) can be treated implicitly to obtain

vn+1 = f(un+1) + e−∆t/τ [v∗ − f(un+1)].

In the limit of τ → 0 this expression simplifies to

vn+1 = f(un+1).

In summary, the relaxation scheme consists of solving Eq. (24) and using

Eq. (6.3). An approximate Riemann solver is defined then as follows. Given

values ul and ur we compute vl = f(ul) and vr = f(ur) and then solve the

Riemann problem for Eq. (21) with the data [15]
{

ul,

f(ul),

{
ur,

f(ur).

6.4. Extension of the Roe scheme for a general equation of state.

The Roe scheme was originally devised for a perfect gas. This scheme is valid

for fluid of a constant ratio of specific heats, γ. One way to extend this scheme

for a variable γ is to adopt a mean value of γ. The other options are based on

application of some sort of averaging [16, 17, 18, 8]. Here, we describe briefly

the method which was developed by Hanawa, Nakajima, and Nobuta [19].

It is useful to introduce the specific total enthalpyH and the specific enthalpy

h as

H = E +
p

%
= h+

v2

2
and assume that thermodynamic variables depend on the mass density % and the

specific internal energy e. The Jacobian matrix possesses the right eigenvectors

r1 =
%̄

2c̄




1

v̄ + c̄

H̄ + v̄c̄,


 , r2 =




1

v̄
1
2 v̄

2 + ε,


 ,

r3 =
%̄

2c̄




1

v̄ − c̄

H̄ − v̄c̄




and the corresponding eigenvalues

λ1 = v̄ + c̄, λ2 = v̄, λ3 = v̄ − c̄,

where c̄ is the averaged sound speed such as

c̄2 = (γ − 1)

(
H̄ − 1

2
v̄2
)
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and

ε =
%i+1Ei+1 − %iEi − 1

γ−1(pi+1 − pi)

%i+1 − %i − 1
c̄2
(pi+1 − pi)

.

The other averaged quantities are

%̄ =
√
%i%i+1,

v̄ =

√
%ivi +

√
%i+1vi+1√

%i +
√
%i+1

,

H̄ =

√
%iHi +

√
%i+1Hi+1√

%i +
√
%i+1

with
1

γ − 1
=

√
%ihi +

√
%i+1hi+1√

%i
∂p
∂% i

+
√
%i+1

∂p
∂% i+1

.

The derivative ∂p
∂% is evaluated at the constant entropy.

The eigenvectors r1 and r3 correspond to the sound waves and the eigenvector

r2 is associated with the entropy wave. The amplitude of each wave is given as

α1 = vi+1 − vi +
pi+1 − pi

%̄c̄
,

α2 = %i+1 − %i − pi+1 − pi
c̄2

,

α3 = −vi+1 + vi +
pi+1 − pi

%̄c̄
.

This scheme consists in a natural generalization of the Roe scheme [6]. In

the case of the perfect gas law p = (γ−1)%e and the scheme reduces to the Roe

scheme.

7. Deficiencies of Godunov-type schemes

Godunov-type schemes are very robust and give reliable results for a wide

range of problems without the need to be retuned. However, even these modern

schemes are far from being perfect. There are few instances in which a particular

scheme produces inappropriate results [20, 21]. For instance, most Godunov-

type schemes lead to the generation of a long wavelength noise, downstream

nearly stationary shock. This noise is not effectively damped by the dissipa-

tion of the scheme [20]. In a few cases Roe solvers exhibit nonlinear instability,

producing unphysical local features which are called carbuncles [22]. These fea-

tures become more pronounced for a finer grid. In multi-dimensions a problem

occurs if a wave is far from aligned with the grid. Then, a grid-oblique wave

may be represented by grid-aligned waves, enhancing numerical dissipation and

leading to a loss of resolution.
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Additionally, the Roe method can admit spurious solutions that are triggered

by an incorrect treatment of shear waves. A weighted average flux formulation

was used by Quirk [23] to devise a shear fix for Roe’s method.

7.1. Entropy fix.

Another deficiency of a Godunov-type scheme is that while computing rar-

efaction waves, the scheme can produce nonphysical expansion shocks in the

computed flow. In this case the true Riemann solution contains a transonic

wave with characteristic speeds that increase from negative to positive values

through the rarefaction fan. Then, the eigenvalue of the average Jacobian Ā is

such that λl < 0 to the left of the wave while λr > 0 to the right of the wave.

It leads to information travelled partly to the left and partly to the right, af-

fecting cell averages on both sides. The Roe solver approximates every wave

by a single discontinuity that propagates at a speed given by an eigenvalue c̄ of

Ā. In the transonic rarefaction case this speed is approximately zero and the

proper spreading does not occur. This can lead to numerical approximations

with entropy violating discontinuities.

Several ways to fix the problem of preventing the Roe method from admitting

expansion shocks exist in literature. For instance, Yee, Warming, and Harten in

[24] replaced the values of the numerical viscosity µ smaller than some tolerance

ε with higher values µ′ such that

µ′ =




µ for|µ| ≥ ε,
µ
2

(
2µ2

ε + ε
2

)
for|µ| < ε.

For typical simulations ε is set to 0.2. This modification is only applied to

rarefaction waves. Although the dependence on ε is small and this entropy

works well it suffers from a drawback that a tunable parameter ε was introduced

into the scheme and there is little physical justification for its use.

To prevent the expansion shocks, an intermediate state (that simulates the

diffusion) between the left and right states is introduced [25]. More precisely,

the single wave ᾱr̄ (coming from the Roe solver) is replaced by a pair of waves

αlr and αrr, propagating at speeds λl < 0 < λr. These speeds are chosen to

approximate the characteristic speeds at each edge of the rarefaction fan. As

the total wave strength should remain the same, we require

αl + αr = ᾱ.

To maintain conservation we also need

αlλl + αrλr = ᾱc̄.
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From these equations we obtain

αl =
ᾱλr − c̄

λr − λl
,

αr =
c̄− ᾱλl

λr − λl
.

The above procedure is called an entropy fix. This procedure is necessary to

obtain physically relevant numerical approximations of the exact solution. In

the Roe method [6] one only needs an entropy fix at sonic points [26]. There was

some debate if this is the same for the magnetohydrodynamic waves. However,

the simplest approach is to apply the entropy fix for the magnetosonic (fast

and slow) waves only. The Alfvén and entropy waves are supposed not to need

entropy fixes as they are linearly degenerate.

A very popular entropy fix method was developed by LeVeque in [2]. The

idea used in the entropy fix is to replace the single jump ur − ul, propagating

at speed λ by two jumps propagating at speeds λl and λr, with a new state u∗
in between [25].

The flux difference can be expressed as follows:

f(ul)− f(ur) = f(ul)− f(u∗) + f(u∗)− f(ur).

Using the property (iv) of the Roe solver this formula can be rewritten as

λ(ul − ur) = λl(ul − u∗) + λr(u∗ − ur).

Hence,

u∗ =
(λ− λl)ul + (λr − λ)ur

λr − λl

and consequently

u∗ − ul =
λr − λ

λr − λl
(ur − ul) ≡ λr − λ

λr − λl
αjrj ,

ur − u∗ =
λ− λl

λr − λl
(ur − ul) ≡ λ− λl

λr − λl
αjrj .

The flux can now be written twofold [2]

f(ul,ur) = f(ul) +
∑

m6=j

λ−αmrm + λ̂j
lα

jrj (27)

or

f(ul,ur) = f(ur)−
∑

m6=j

λ+αmrm − λ̂j
rα

jrj , (28)

where we introduced the following notation:

λ̂j
l ≡ λl

λl − λ

λr − λl
, λ̂j

r ≡ λr
λ− λl

λr − λl
.
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The eigenvalue λ± is defined by Eq. (4). Equations (27) and (28) are used

instead of Eqs. (8) and (9).

Another entropy fix that was based on estimates for the spreading rate of

each wave within the approximate Riemann solution was devised by Roe in

[27]. Moreover, Osher [28] found a general condition for a scheme to be entropy

satisfying when applied to scalar equations. He designed such schemes which

were called E-schemes.

The above presented entropy fixes may fail in some circumstances. For in-

stance, it has been found that the above entropy fix failed in the presence of

a negative/positive transonic rarefaction of the van der Waals gas [8]. In this

case the standard entropy fix of [25] overcome this problem [8].

8. Numerical simulations of random waves

In recent years, the propagation of waves in random media has been the sub-

ject of intensive studies in the most diverse branches of physics. For instance,

the effect of turbulence in the solar atmosphere on the surface–gravity wave

amplitudes and frequencies was discussed by Murawski in [29, 30] . In another

context, [31] showed that a space-dependent random flow shifts the frequencies

of acoustic waves and alters their amplitude. Fast magnetosonic waves which

are impulsively generated in plasma, having a random mass density, were dis-

cussed by Murawski, Nakariakov, and Pelinovsky in [32]. They showed that

the localized pulses experience a spatial delay and attenuation due to the space-

dependent (step-wise constant) random field. Attenuation of nonlinear waves

was considered by Wadati [33] who proved that a soliton, propagating a dis-

tance x in a x-dependent random medium, has its amplitude decreased as 1/
√
x

and its width increased as
√
x. Lipkens and Blanc-Benon in [34] showed that

as a result of turbulence the nonlinear distortion of a pulse is weaker than in

the deterministic case.

We consider here a simple case of one-dimensional acoustic waves propagating

in a fluid whose density is a random function of time. To provide a consistent

and general treatment of wave propagation, we develop a numerical approach

for which the deviations of the random density fluctuations from their mean

value and the wave amplitude are not necessarily small.

In this section, we present the results of the numerical simulations for one-

dimensional Euler equations. These simulations are performed with the use

of the CLAWPACK code [3, 4, 35], which is a packet of Fortran routines for

solving hyperbolic equations. The code utilizes the wave propagation method

([3] and Sec. 2.3).

%0 = const, v0 = 0, p0 = const.
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Here %0, v0, and p0 are the background mass density, velocity, and pressure,

respectively.

8.1. Numerical results for a random field.

The random field is seeded through the term S% in the momentum equation

such that

S% = %r,t,

where:

%r(tm) = <
(√

2

N

N−1∑

n=0

%̄(Ωn)e
(−2jπm n

N
+jφn)

)
≡

√
2N<

(
F−1

(
%̄(Ωn)e

−φn

))
. (29)

Here N denotes number of Fourier modes taken into account, φn is a random

phase with uniform distribution over the interval 〈0, 2π), chosen by the random

number generator ran1 [36]. The quantity %̄(Ωn) denotes the mode’s amplitude

%̄(Ωn) =
√

E(Ωn).

The spectrum E(Ω) is sampled uniformly by N values Ωn

Ωn =
2πn

N∆t
, n = 0, 1, 2, · · · , N − 1,

where:

∆t =
tN−1 − t0

N
.

In Eq. (29) t is sampled as follows:

tm = t0 +m∆t, m = 0, 1, 2, · · · , N − 1.

With the use of the correlation theorem ([36]):

F < %r(tm1)%r(tm2) >= |%r(k)|2

we find that the random field, which is generated in this way, possesses the

required spectral properties. Fig. 2 shows typical realization of the random

field which was generated by the present method. A similar way of seeding the

random field was developed by Juvé et al. in [37].

The periodic boundary conditions are applied at the edges of the simulation

region which are typically chosen at x = 0 and x ' 82 c0lt.
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Fig. 2. Random mass density as a function of time t for typical accomplishment of

random medium

9. Conclusions

In this paper we presented the Godunov-type numerical methods for solving

hyperbolic equations. Although this presentation is far from complete the em-

phasis is on the methods which are the most effective and the best known for

the author.

There are several conditions that numerical schemes should satisfy: accuracy

and speed of numerical simulations, adequate representation of complex flows

and steep profiles, without generation of spurious oscillations as well as robust-

ness. A computer code is described as being robust if it has the virtue of giving

reliable results to a wide range of problems without the need to be retuned.

Modern numerical schemes such as shock-capturing schemes described in this

paper satisfy these conditions.

The existing numerical models demonstrate the feasibility of fluid simulations

in obtaining at least qualitative and, to some extent, quantitative features in

the magnetized fluid. With continuous improvement in computational methods

and computer resources, the usefulness and capability of the numerical approach

should continue to develop.

We demonstrated a performance of the CLAWPACK code as an example

of a numerical study of a medium with time-dependent random mass density

fluctuations.

This work was performed in the frame of the grant from the Polish Ministry

of Science for the years 2007-2010.
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