Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 13/01/2026 00:15:55

Annales UMCS
o S . Informatica
&z % Annales UMCS Informatica Al IX, 1 (2009) 77-97 Lublin-Polonia
£ DOI: 10.2478 /v10065-009-0006-z)
% |, § Sectio Al

Cogy jpg.a98™

http://www.annales.umcs.lublin.pl/

Query Optimization by Indexing in the ODRA
OODBMS

Tomasz M. Kowalski!, Michal Chromiak?, Kamil Kuliberda!,
Jacek Wiglicki', Radostaw Adamus®, Kazimierz Subieta?

L Technical University of Lodz, Stefanowskiego 18/22, 90-92/ Lodz, Poland
2 Institute of Computer Science, Maria Curie Sklodowska University,
pl. M. Curie-Sktodowskiej 1, 20-031 Lublin, Poland
3 Polish-Japanese Institute of Information Technology, Koszykowa 86,
02-008 Warsaw, Poland

Abstract

We present features and samples of use of the index optimizer module which has been im-
plemented and tested in the ODRA prototype system. The ODRA index implementation
is based on linear hashing and works in a scope of a standalone database. The solution is
adaptable to distributed environments in order to optimally utilize data grid computational re-
sources. The implementation consists of transparent optimization, automatic index updating

and management facilities.

1. Introduction

Indices are auxiliary (redundant) data structures stored at a server. A data-
base administrator manages a pool of indices generating a new or removing an
existing one depending on the current needs w.r.t. improving overall perfor-
mance of applications. As indices at the end of a book are used for quick page
finding, a database index makes quick retrieving objects (or records) matching
given criteria possible. As indices have a relatively small size (comparing to the

Pobrane z czasopisma AnRAE AT ARRSRAHEEHEY 1 AShigEVaRGSs 5 fully justified by some extra stor-
Data: 13/01/2026 00: 15:588¢ space. Due to single aspect searching, which allows one for very efficient

physical organization, the gain in performance can be even several orders of
magnitude.

The general idea of indices in the object—oriented databases does not dif-
fer from indexing in relational databases [1]. Many indexing methods can be
adopted from relational database systems and even their applicability can be
significantly extended. There are also situations where indexing methods from
RDBMSs become outdated in object—oriented databases. In particular, join op-
erations do not require extensive optimizations because in object databases the
necessity for joins is much lower due to object identifiers and explicit pointer
links.

ODRA (Object Database for Rapid Applications development) is a prototype
object-oriented database management system based on the Stack Based Archi-
tecture (SBA) [2, 3]. The main goal of the ODRA project is to develop new
paradigms of database application development and to introduce a new, uni-
versal declarative programming language, together with a distributed database-
oriented and object-oriented execution environment. ODRA introduces its own
query language SBQL (Stack Based Query Language) that is integrated with
programming capabilities and abstractions, including database abstractions:
updatable views, stored procedures and transactions.

An important feature of ODRA concerns the optimization engine responsible
for increasing the performance of query execution. The essential component of
the engine is the module that optimize queries by using indices. The main fea-
tures of the indices implementation include: transparent choosing appropriate
indices for a given query (if available), automatic update of indices in response
to update of corresponding data and administrative management of indices.

The paper presents the above three aspects of indices implementation in
ODRA. Section 2 contains a brief overview of selected OODBMSs index capa-
bilities. Section 3 presents overall architecture of the ODRA query optimization
engine. Section 4 discusses the features of indices in ODRA. Section 5 describes
ODRA index management facilities. Section 6 exemplifies query optimization
based on indices. Section 7 presents performance gain of proposed solution
based on an example query. Section 8 concludes.

2. Query Optimizations with Indices in OODBMSs

In the case of the Versant ODBMS [4] a B—tree index can be used in an exact
or range predicate processing. No index inheritance is present in the Versant
database. An index can be created on an attribute of only one class. No class

Pobrane z czasopisma A ninales Aingritonmatheadui¢ pritdi . the dhekpmas. phherit the index. To index subclass
Data: 13/01/2026 00:15:5attributes, it is necessary to specifically set indices on each subclass. This results
in the need for providing index consistency by a database administrator.

In the Objectstore DBMS [5] there are two types of improving query perfor-
mance by indexing, i.e., with indices and with superindices. The first solution
involves building indices on a collection of objects. A superindex is an index
kind that is specially used for optimizing queries involving types that have many
subtypes. By default, adding an index on a type results in recursive adding of
indices to all its subtypes. Still for queries with a large and intricate hierarchy
of subtypes the regular indexing can seriously deteriorate processing. Adding
a superindex to a type with many subtypes differs from a default index in one
essential feature: the superindex is only one. It eliminates a recursion; conse-
quently, only one parent query operation occurs in contrast to multiple queries
when using the regular index.

There is also a possibility to create a query that uses a multistep index,
which is an index on a complex navigational path that accesses multiple public
data members. It optimizes queries that use the same path. For example, if
a query concerns all employees who works in the Sales department, an index
on WorksIn.Name to Emp collection can be used. However, updating an index
entry after data modification must be explicitly determined by the programmer.
It is a serious drawback of an ObjectStore multistep index.

The ObjectStore ODBMS automatically optimizes a query applied to a col-
lection. If an index is added to a collection, then the database first evaluates
indexed fields and establishes a preliminary result set. Then, ObjectStore ap-
plies non-indexed fields and methods to the elements in the preliminary result
set. In ObjectStore the optimization can be done manually by preparing a query
or automatically otherwise. This means that a query is optimized to use ex-
actly indices which are available on the collection being queried. The automatic
optimization is convenient and effective. Moreover, it supports data indepen-
dence, i.e., the database administrator is not constrained in establishing new or
removing indices because application programs do not refer to them explicitly.

Let us consider the index usage in Objectivity/DB [6]. The main goal of
an index is to optimize predicate scans and this is how it is implemented in
Objectivity. The predicate used in the scan can be one of the following:

e A single optimized condition (=, ==, >, <, >=, <=, =~ — string match)
that tests the first key field of the index

e A conjunction (&&) of conditions in which the first conjunct is an optimized
condition that tests the first key fields of the index (no disjunction — OR)

Pobrane z czasopisma Annalbs fhe tafernfaltg &itivitef Bihatestimcsaphn index for a class means indexing

Data: 13/01/2026 00:15:53ls0 objects references of all classes derived from the indexed one. The index
structure maintains references to persistent objects of a particular class (so
called indezed class) and its derived classes. An indexed class is specified during
creation of an index. Objectivity /DB additionally supports concatenated index
on several attributes (key fields). The order of key values of an index is very
relevant regarding the proper activity of predicate.

While considering indexing in OODBMSs the way the GemStone database
server handles the issue should also be noticed [7, 8]. GemStone indices address
path—expressions. A variable name appearing in the beginning of a path is
called path prefiz. Then, a path contains a sequence of links and a path suffix;
e.g. Employee.worksIn.manager. For each link (for an instance variable of an
object) in the path suffix one index is available thus forming a sequence of
index components. In GemStone identity indices directly support exact match
lookups; whereas, equality indices and identity indices on Boolean, characters
and integers directly support =, >, >=, <, <= and range lookups.

3. Query Optimization Engine Architecture

Fig. 1 shows the ODRA query optimization process in the context of a query
evaluation process. The input for the optimization process is an abstract syntax
tree (AST) of a query. The optimization modules are divided into optimization
by rewriting and optimization by indices. The theoretical idea for these methods
is presented in several documents, see e.g. [9, 10, 2, 3].

The rewriting optimization process modifies a query during compile-time
with the use of information stored in the metabase augmented with static
query evaluation results. Currently ODRA supports several rewriting methods:
changing the order of execution of algebraic operators; view rewrite (replacing
a view invocation by a view body); removing dead sub—queries; factoring out
independent sub—queries; shifting conditions as close as possible to the proper
operator; methods based on the distributivity property of some query operators.

Optimization by indices searches for parts of an input query that can be
transparently replaced with an index call. If such an index exists (added previ-
ously by the administrator) the query is rewritten to the form where the target
part is replaced with an index invocation.

4. The idea of ODRA indexing

In general, an index can be considered a two—column table, where the first
column consists of unique key values and the other one holds non-key values,

Pobrane z czasopisma Annales Al - Informaticedptan/fai-annales.umcs.pl N

Data: 13/01/2026 00:15:55 query: PARSER
@ Fr———————t—————— B @
QUERY SYNTAX TREE lw
i o i |
SEMSTRONG opTiMisaTION || INDEX INTERPRETER OF QUERIES
v BY REWRITING OPTIMISER | | ANDAPPLICATIONS
= R A s 1
L STATIC :j kl ENVIRONHENT |
L EwS I _STACK
\
—— I I
T sTATIC | ‘ 1™ Query !
L ores | | IRESULT STACK
! “locaL |
1 METABASE

icmmorl

SERVER il o
"RecisTER 1 | ipEx |
| veTABAsEoF 1/ | OFVEWS | | mANAGER |
PERSISTENT B

| OBIECTS

DATABASE C.R.U.D.
(Create, Read, Update, Delete)

PROCESSING PERSISTENT
ABSTRACTIONS
(VIEWS, TRANSACTIONS,
PROCEDURES, METHODS)

\ 1‘\~~E§5§\STENT (SHARED) OBJEgS«"’; /

Fig. 1. ODRA optimization architecture

which in most cases are object references. Fig. 2 shows the example indices for
a given object—oriented database store.

Key values are used as an input for index search procedures. As a result, such
a procedure returns suitable non-key values from the same table row. Keys are
usually values of database objects specific attributes (dense indices) or represent
ranges of these values (range indices).

Key values can be also calculated with the use of expressions that can contain
build-in query language functions or user defined functions (function-based in-
dices [11]). This approach enables the administrator to create an index match-
ing exactly predicates within frequently occurring queries, so their evaluation
is faster and uses the minimal amount of I/O operations.

In query optimization indices are used in the context of a where operator,
when the left operand is indexed by key values of the right operand selection
predicates. Let us make an example using the database store structure pre-
sented in Fig. 2. If the administrator will set an index named

Pobrane z czasopisma Annal
Data: 13/01/2026 00:15:55

Index for Emp objects
© Sumams Nowad | — according to Surname attribute
e Sumane - Search
iz Salary 2500 iy Salary 2000
: LRl e key- | References
is Worksln o is, Worksln 4 N2 AMERIESS value
+ ijz.City. "Radom” - -
12 Strest "Wolska™ Barski 1
i): Local_nr 12 Kowalski Is
i1 Works Nowak 5l
Index for Depart objects
sccording to Location attribute
= ! — Search
5
®LP - key- References
G Name Sl -
o o e s Lossion ot Kielce L
‘ Krakow 117
Radom 1o

Fig. 2. Example of dense indices for a given object-oriented database store

(Emp where Salary = 2000 and WorksIn.Depart.Name =
“Sales”) .Surname;

(idxEmpSalary(2000) where WorksIn.Depart.Name =
“Sales”) .Surname;

For big databases, replacing the where clause evaluation with an index func-
tion call may cause performance gain even orders of magnitude. However, to
achieve this the database server should ensure index transparency and auto-
matic index updating.

4.1. Index Transparency.

In the common approach a programmer should not involve explicit operations
on indices into an application program. To make indexing transparent from the
point of view of a database application programmer, the database management
system should ensure two important functionalities index—based optimisation
and automatic index updating.

The first functionality means that indices are used automatically during query
evaluation. Therefore, the administrator of a database can freely establish new
indices and remove them without changing the codes of applications. The

Pobrane z czasopisma A nnebeAsiHitforieakoaintings /faichnmalepaneespllies in query optimisation and par-
Data: 13/01/2026 00:15:5%icularly in the index optimiser.
The second functionality, i.e. an automatic index updating, is required due to
possible changes in a database. Indices, like all redundant structures, can lose
cohesion if a database is updated. An automatic mechanism should improve,
eliminate or generate a new index in the case of database updates.
This paper focuses on the first functionality, i.e. index optimisation, which
is the main topic of Section 6.

4.2. Index Classification.

The most common classification of indices distinguishes primary and sec-
ondary ones or dense and range ones. From the query optimizer point of view
the distinction between primary and secondary indices is less crucial because
it does not lead to significant differences in optimizer algorithms, whereas the
division into dense and range indices is essential:

e a dense index is applied when for each value in the object attributes a sepa-
rate position in an index is created, e.g. for a person objects index, where any
name occurring in the database can be a key—value,

e a range index means that index items concern values within a given range,
e.g. a range index for a salary attribute is a table where each index item de-
scribes a range of salaries: < 0 — 500), < 500 — 1000), < 1000 — 1500), ... etc
(Table 1). Similarly, range index items for names can take the following form:
"names starting with a letter A”, "names starting with a letter B”,..., "names
starting with a letter Z”.

Table 1. Example range index for Employees objects according to Salary attribute

Search key- References to
Range
value Employees
<0, 500) 0 115
<500, 1000) 500 172, 143
<1000, 1500) 1000 118, 122, 125, 130
<1500, 2000) 1500 145, 159, 148, 132

Indices can also be categorized according to physical data structures used
for index organization. The most important data structures for implementing
indices are the following:

Pobrane z czasopisma A nealeslikés Iwichnieista ditiingai .annal es.umcs.pl
Data: 13/01/2026 00:15:5% indices based on B—tree (a balanced tree),
e bitmap indices.

4.3. Features of ODRA indices.

Currently the implementation supports indices based on Linear Hashing [12]
which can be easily extended to its distributed version SDDS [13] in order
to optimally utilize data grid computational resources. Nevertheless, there
is a wide range of different index structures that could be used in indexing
in object—oriented databases similarly to those in the solutions occurring in
relational ones [11, 1, 14, 15]: B-Trees, bitmap indices, etc.

An extended idea of an ODRA index works with multiple key indices. Addi-
tionally to the key types mentioned earlier (dense and range) enum type was
introduced to improve multiple key indexing (among other things). Moreover,
thanks to properties of the SBQL language, i.e. orthogonality and composition-
ality, the implemented solution provides generic support for variety of index
definitions including usage of complex expressions with polymorphic methods
and aggregate operators.

ODRA supports local indexing which ensures index transparency by provid-
ing a mechanism (optimization framework) to automatically utilize an index
before query runtime evaluation and therefore to take the advantage of indices.
ODRA C.R.U.D. (Create, Read, Update and Delete) is also equipped with trig-
gers to ensure automatic index updating so existing indices are consistent with
the database state.

5. Index Management

All indices existing in a database are registered and managed by the ODRA
index manager. The list of all indices and auxiliary information needed by
the index optimizer are stored inside a special admin module. Each index is
associated with a module where it was created and its name has to be unique.
Therefore, the index manager checks whether a given index exists in the list
of references to meta-base objects describing indices using the combination of
a module name and an index name: "module,ame.index,ame”.

5.1. Example Schema.

The schema in Fig. 3 is introduced to exemplify the usage of indices.

The example schema illustrates personnel records of a company. It introduces
several classes PersonClass, StudentClass, EmpClass, EmpStudentClass and
two structure types DeptType and AddressType. Persistent instances of the

Pobrane z czasopisma Annales Al -Hatopmaticahttp/aiannales.umcs.pl
Data: 13/01/2026 00:15:55 Student : StudentClass EmpStudent : EmpStudentClass
e scholarship : Integer
getFullName() : String getFullName() : String
getScholarship() : Integer getTotallncomes() : Integer
setScholarship(wartosc¢ : Integer)

Person : PersonClass

name : String Emp : EmpClass
surname : String L salary : Integer

age : Integer getFullName() : String
married : Boolean getTotallncomes() : Integer
getFullName() : String

1 worksIn
1 address

0..* employs

AddressType 1
city : String Dept : DeptType
street : String name : String
zip : Integer[0..1]

address

Fig. 3. Example object—oriented schema

classes mentioned above can be accessed using their instance names Person,
Student, Emp and finally EmpStudent. The objects called Dept have DeptType
structure with a primary attribute name and represent departments of the
company. Each Person object stands for a person somehow connected with
the company. Its attributes provide some basic information. Additionally, each
Dept and Person object includes an address subobject which specifies data
according to the AddressType structure. Instances of the EmpClass represent
current employees of the company and extend Person object attributes with
the salary attribute. Emp and Dept objects are associated with pointer objects
named worksIn and employs. Another class, which extends the PersonClass, is
the StudentClass. This class introduces the scholarship attribute. The last class
presented in the schema is called EmpStudentClass and inherits from EmpClass
and StudentClass. It is introduced to represent students who are simultaneously
employees of the company. Using Person in an SBQL query results in returning
all instances of the PersonClass class and its subclasses. Similarly, via Emp the
programmer refers both to EmpClass and EmpStudentClass instances.

Beside attributes, classes comprise methods. Taking advantage of the poly-
morphism some methods are overridden in derived subclasses. E.g. getTotal-
Incomes() method of EmpClass returns the value of a salary attribute, but

Pobrane z czasopi sma A nifietesddannésrofiatica Bttp.dtaidemn@lessimosphrns sum of salary and scholarship
Data: 13/01/2026 00:15:5attributes.

5.2. Index Types.

The syntax for creating index allows the administrator to specify general
index key properties, i.e. concerning key values or the goal of optimization.
These are achieved by introducing optional type indicators: dense, range and
enum.

The dense indicator implies that the optimization of queries which use the
given key as a condition will be applied only for selection predicates based on =’
or in operators. Therefore the distribution of indexed objects in index (e.g. in
hash table) can be more random. The order of key values has no significance for
indexing. The dense indicator is always used for reference values (regardless of
an indicator set by the administrator). Moreover, it is the default type indicator
for integer, string, double or reference key values.

add index idxEmpSalary(dense) on Emp (salary)

The range indicator implies that optimized selection predicates will be based
not only on '=’ or in operators but also on range operators: '>’, ’>’, ’<’ and
’<’. Within an index a hash function groups objects according to key value
ranges. In the current implementation, ranges are dynamically split because

each range is associated with an individual bucket of a linear hash map.

add index idxDeptSalary(range) on
Dept (sum(employs.Emp.salary))

The idzDeptSalary index returns references to departments according to
a value (or a value range) of a sum of department employees salaries. Its ad-
vantage is avoiding calculation of a complex selection predicate multiple times
because it is already calculated during index creation. On the other hand, the
maintenance of the idzDeptSalary index is very expensive and can cause serious
deterioration during database updating.

The enum indicator is introduced in order to take the advantage of keys with
a countable limited set of distinct values, i.e. keys with low values cardinality.
The performance of an index can be strongly deteriorated if key values have
low cardinality e.g. person eye colour, marriage status (Boolean value) or the
year of birth. Using the enum key type index internally stores all possible key
values (or range for integer values) and uses this information to optimize the
index structure.

Pobrane z czasopisma Annal&hA krimfolregtiea bt/ dnmalesptiodzihg selection predicates exactly as in
Data: 13/01/2026 00:15:5%he case of the range indicator, i.e. for: =", in, ’>’, ’>’, ’<’ and '<’ operators.
Another important property of enum keys occurring when index is set on
multiple keys is that the optimizer can omit them if necessary during opti-
mization of queries. If enum is set on all index keys and the number of indexed
objects is large then index call evaluation should prove great efficiency (each key

value combination points to a separate object references array called bucket)

add index idxPerAge&Mar&City(enum|enum|enum) on Person(age,
married, address.city)

Other examples of creating indices commands are as follows:

add index idxPerZip(enum) on Person(address.zip)

The enum index which returns Person objects queried by a zip attribute of
its subobject address. It is important to note that a zip attribute is optional
and therefore this index stores only Person objects containing this attribute.

add index idxPerBirthYear (range) on Person (2009 - age)

The index returns Person objects according to the value of expression 2009
— age. It is assumed that this index is capable of processing range queries.

add index idxEmpTotalIncomes on Emp (getTotalIncomes/())

The dense index uses the Emp class method getTotallncomes() as a key for
selecting Emp objects. This method is overridden for instances of the EmpStu-
dent class.

The only action required from the administrator in order to take advantage
of indexing is creation of proper indices since the rest of optimization is trans-
parent for programmers. The next section describes the rules used by the Index
Optimizer.

6. Query Optimization

In ODRA the use of indices is entirely transparent for an application code.
The programmer may be aware or not of existence of indices, but the code does
not depend on it. The index optimizer automatically applies all possible indices
during query compilation process.

Pobrane z czasopisma AnnalBs#Adesntbisngiossihilipyl/a . asealesumlss.plse indices explicitly. This feature
Data: 13/01/2026 00:15:5% introduced for testing purposes in order to check semantic equivalence of
introduced index optimizations and research into new possibilities in indexing.
In the following we briefly describe ODRA indices optimization engine module

used for query optimization based on indices.

6.1. Index Usage Syntax.

From the SBQL syntax point of view an index invocation is simply a proce-
dure invocation:

<indexname>(<key param 1> [; <key param 2> ...])

The number of parameters is equal to the number of index keys. Each key
parameter defines a desirable value of a key. An index function call returns
references to objects matching specified criteria.

A key parameter expression can define a single value as a criterion. In that
case its evaluation should return integer, double, string, reference or Boolean
value or reference to such a value. Below we present an example calls for the
sample index idrDeptName:

idxDeptName (“HR” groupas Sequal)

A single value key parameter can be passed through a value of a binder named
”$equal”. Binders are used to increase readability and to make introducing new
types of parameters for index calls easier.

To specify a range as a key value criterion parameter, an expression should
return a structure consisting of four parameters:

(< lower_limit >, < upper_limit >, < lower_closed >, < upper_closed >)
where:

o < lower_limit > and < upper_limit > are key values specifying range,

o < lower_closed > is a Boolean value indicating whether < lower_limit >
belongs to a criterion range,

o < upper_closed > is a Boolean value indicating whether < upper_limit >
belongs to a criterion range.

Examples of index calls:

The last example returns references to persons whose year of birth is below
the average of all the persons from the database. Like in the case of single
value key parameters, parameters specifying a range are passed using the value
of a binder named ”$range”.

Pobrane z czasopi sma A nnalies-Ade 1 Bfiortiieticarht (p:9/88. anhgbes urtice) true) groupas Srange)
Data: 13/01/2026 00:15:55

idxPerBirthYear((1900, (sum(Person. (2009 - age)) /
count (Person)), true, false) groupas Srange);

A key parameter can specify also collection of single key values as a criterion.
This is done when a key parameter returns a bag of key values.

idxEmpAge&WorkCity ((25 union 30 union 35) groupas $in;
“Boston” groupas Sequal)

The binder named ”$in” is used to pass a collection of key values.
If a criterion parameter returns an empty bag then the index call returns an
empty bag too.

6.2. Transparent Index—based Optimization.

The mechanism responsible for index transparency during query evaluation
is called the index optimizer. Its function is to replace a part of a query with
an index call in order to minimize amount of data processed.

This section describes general rules used in solving the problem of seman-
tic equivalence of queries rewritten by the index optimizer and original input
queries. Most of the following rules concern optimizing range queries. The in-
dex optimizer analyzing the right operand of a where non-algebraic operator
takes into consideration all selection predicates joined with conjunction (and)
or disjunction (or) operators.

6.2.1. Optimization procedure.

The basic index optimizer procedure works on selective queries where left side
of the where operator is < object.xpression > indexed by one or more indices.
The algorithm analyses all selection predicates joined with and operators and
tries to find an index that keys matches the predicates. If more than one index
is found, the optimizer selects one with the best selectivity.

6.2.2. Semantic Equivalence Issue in Optimization Involving Optional Keys.

Firstly, let us to consider how [0..1] key cardinality affects optimization. Us-
ing criteria with the discussed cardinalities may cause runtime errors because

selection predicates based on '=’, >’ ’>’) "<’ and ’<’ operators force using
single values as left and right operands. An unexpected number of operand

Pobrane z czasopisma A nnalles:A caler matioathite ¢fanantéliesguaicsiplex call in optimization with those
Data: 13/01/2026 00:15:5predicates would eliminate threat of error and therefore optimized query would
not be semantically equivalent to the original. In these cases the optimization is
allowed only if in operator is used as a predicate because it does not constrain
the cardinality of a right operand.
The example of an unsafe predicate evaluation that may cause a run—time
error (left side of selection predicate has cardinality [0..1] due to zip attribute)
is presented below:

Person where address.zip = 94107

To avoid the possibility of a run—time error the ”safe” in operator should be
used:

Person where 94107 in address.zip

In the discussed case the index optimizer supports optimization when predi-
cates are defined using '=", ’>’, ’>’ ’<’ and '<’ operators and only if a proper
exists predicate is used.

The example of safe predicate evaluation when =’ operator is used can be
as follows:

Person where exists (address.zip) where address.zip = 94107

Only in the case of two previous examples of queries the Index Optimizer can
apply the following query transformation:

idxPerZip (94107 groupas Sequal)

The minimal cardinality of a key equal to zero indicates that the index may
not contain references to all objects defined by an index < object_expression >.
In the case of multiple key index, if such a key is omitted in selection predicates,
it is possible that evaluation of the where operator may return references to
the objects that are not stored inside the index. Therefore, the index optimizer
would not apply optimization using such an index. To sum up, keys with the
minimal cardinality equal to zero are obligatory even if they are declared with
enum type indicator.

Pobrane z czasopisma Annal e$ 213.| nfGryaatitid hep i biCandabesitgncs.pl

Data: 13/01/2026 00:15:55
Currently the maximum cardinality of keys greater than one is not supported

by the ODRA indices. However theoretically it would imply that an index
call may return the same object reference more than onece. To prevent such
problems in the future, the index optimizer uses the uniqueref operator to
remove redundant object references.

6.2.4. Aspects of Range Predicates Optimization.

If optimized query selection predicates specify only one limit of a range (lower
or upper) then the second limit is generated automatically i.e. a possible small-
est or biggest value for a given key. For example, the following query concerns
the departments located in the Warsaw city whose employees together earn less
than the best paid employee of the whole company.

Original query:

Dept where sum(employs.Emp.salary) < max(Emp.salary) and
address.city = “Warszawa’”

Optimized query:

idxDeptSalary((-2147483648, max (Emp.salary), true, false)
groupas Srange) where address.city = “Warszawa”

If there are more than one predicate or two opposite predicates describing
the range on a given key then min, max, union and comparison expressions
are used to obtain a correct key range parameter.

Original query:

((sum(Person. (2009 - age)) / count(Person)) as avgyear) .
(Person where 2009 - age > avgyear and 1970 <= 2009 -
age and 2009 - age < 1980)

Optimized query:

(sum (Person. (2009 - age)) / count(Person)) as avgyear) .
idxPerBirthYear ((max (avgyear union 1970), 1980, 1970 >
avgyear, false) groupas Srange)

Pobrane z czasopisma Annal e$ 215.| nfamidiiga biripetes samp aed esmCaibs.

Data: 13/01/2026 00:15:55
In some cases, the index optimizer can use if then expression to predict

whether a given query returns no result (and calling the index is unnecessary)
i.e. if selection predicates are in contradiction. This is to be checked e.g. when
for a given key there exists more than one selection predicate and at least one is
based on =’ or in operator. If any of these selection predicates contradicts with
a predicate based on =’
bag:

or in operator then such a query returns an empty

Original query:

((sum(Person. (2009 - age)) / count(Person)) as avgyear) .
(Person where 2009 - age >= avgyear and 1977 = 2009 -
age)

Optimized query:

(sum(Person. (2009 - age)) / count(Person)) as avgyear) .if
(1977 >= avgyear) then idxPerBirthYear (1977 groupas
Sequal)

This procedure is used also when the key cardinality is different from [1..1],
i.e. in the case of two or more selection predicates based on in operator.

6.2.6. Omitting Individual Index Keys.

For multiple keys indices, enum keys may be usually omitted in an index
call. The index optimizer, in order to omit a key when no selection predicates
were specified, sets both lower and upper bounds to the smallest and largest
key values: Original query:

Person where true = married and address.city in "Wrociaw"

Optimized query:

idxPerAge&Mar&City ((-2147483648 , 2147483647 , true ,
true) groupas Srange; true groupas Sequal ; "Wrocitaw"
groupas Sequal)

To omit the Boolean key in an index call, set key parameter criteria are used
(false union true). Original query:
Optimized query:

Pobrane z czasopisma Anna @sA$oinfetraakcabtt p>//dilammaleS.ames.glge and address.city in
Data: 13/01/2026 00:15:55 "Wroctaw"

idxPerAge&Mar&City ((30 , 33 , false , true) groupas
Srange; (false union true) groupas $in ; "Wroctaw"
groupas Sequal)

6.2.7. Predicates Disjunction and Considering Inheritance.

The index optimizer is also prepared to deal with queries where selection
predicates are joined with or operators. As disjunction weakens a selection,
it also makes optimization more complex. Therefore if the application of an
index is possible without considering predicates joined with or operator then
the optimizer may skip deeper analysis. In another case, in order to check all
possibilities for indexing, the optimizer removes or operator and splits non—
algebraic where operator expression on two partial selection expressions. The
objects returned by both these expressions can be duplicated so it is necessary
to leave only distinct object references which is achieved using a uniqueref
expression. Indexing reduces the amount of data processed in a query only if
it can be applied to both partial expressions. This procedure is recursive if
there is more than one or operator. Let us consider the following example of
optimization:

Emp where age = 28 and married = true and (address.city =
“Szczecin” or “Szczecin” in worksIn.Firm.address.city)

The query can be split by the index optimizer into the following form:

uniqueref ((Emp where age = 28 and married = true and
address.city = "Szczecin")
union (Emp where age = 28 and married = true and
"Szczecin" in worksIn.Firm.address.city))

and depending on a current cost model and existing indices, the optimizer
can apply the transformation:

uniqueref ((
(Emp) idxPerAge&Mar&City (28 groupas Sequal; true groupas
Sequal; "Szczecin" groupas Sequal))
union (idxEmpAge&WorkCity (28 groupas Sequal; "Szczecin"
groupas Sequal) where married = true)

Pobrane z czasopisma A nnaleslAdtibnf prrediicaéd tpasal. annades.umesipl! and address. city expressions con-
Data: 13/01/2026 00:15:55ern EmpClass’s superclass, i.e. PersonClass, and for that reason the admin-
istrator can equip the whole Person collection with the idxPerAgeéMarésCity
index. It can return instances that do not belong to EmpClass thus the op-
timizer has to introduce a facility removing non—EmpClass instances from the
index invocation result. This can be done using an SBQL coerce operator. The
syntax of the coerce operator was taken from the typical syntactic convention
that is known from the languages such as C, C++4, Java, etc. as cast. Conse-
quently, the result of the idzPerAgeéMarésCity index call is automatically cast
to Emp collection because the original query concerns only employees.
In the presented approach to reusing an index in inheritance, indices consid-
ering the class which introduces the given key are more versatile as they can be
used for optimising selection queries addressing subclasses collections.

7. Optimization Gain

Let us discuss the following test example. If an index call is located on the
right side of a non—algebraic operator, e.g. a dot, then it is likely to be evaluated
more then once during the query execution. This is shown using the following
example with an ideEmp Totallncomes index:

Query la. For 61 year old, married employees living in £6dz, working in L6dZ or
Wroclaw retrieves a name concatenated with a surname and a number of employees

with an equal amount of total incomes

reference ((Emp where address.city = "%6dz" and
worksIn.Dept.address.city in ("Eo6dz"
union "Wroctaw") and married = true and
age = 6l) as e).

(e.name + " " 4+ e.surname, count (Emp
where getTotalIncomes() =
e.getTotallncomes()))

index optimised ((Emp where address.city = "Lb6dz" and
worksIn.Dept.address.city in ("Lo6dzZ"
union "Wroctaw") and married = true and
age = 6l) as e).

(e.name + " " + e.surname,

count (idxEmpTotalIncomes (e.getTotalIncome

s()))

In Figs 4 and 5 the logarithmic scale is used also on the y—axis. The de-
pendency between the optimization gain and the number of persons is close to
linear and grows to 457 for 300000 objects.

Pobrane z czasopisma Annales Al - | nformati cergr /AL A eSEMTS g me —o— gain |

Data: 13/01/2026 00:15:55

100000 100000
10000 - A T 10000
g
1000 - /K/’ T 1000
=}
= e = = _
100 - 74 T 100 2
—_— ©
) D =
10 - e =7 jloce T 10 =
ALl /{ ,GB’/‘
#
1 = ol < /J</ » _,‘EB/ T 1
/ -~
e] =g
0.1 " L 0,1
0,01 T - — 0,01
10 100 1000 10000 100000 1000000

no. of persons

Fig. 4. Evaluation times and optimization gain for Query la

Additionally, introducing another index — idzEmpAgeéd WorkCity — in order
to optimise evaluation of the first part of the query can significantly influence
the performance:

Query 1b.

reference ((Emp where address.city = "%6dz" and
worksIn.Dept.address.city in ("£6dz"
union "Wroctaw") and married = true and
age = 61) as e).

(e.name + " " + e.surname, count (Emp
where getTotalIncomes() =
e.getTotallncomes()))

index optimised ((Emp where address.city = "Lb6dz" and
worksIn.Dept.address.city in ("&6dzZ"
union "Wroctaw") and married = true and
age = 61) as e).

(e.name + " " + e.surname,

count (idxEmpTotalIncomes (e.getTotalIncome

s()))

For a database consisting of 300000 person objects two indices give the gain
approximately 40 times greater. Despite such difference, the most important is
an index repeatedly invoked, i.e. ideEmp Totallncomes. Without this index the
performance is not noticeably improved.

Pobrane z czasopisma Annales A
Data: 13/01/2026 00:15:55

100000

10000 - /<>
/
o — <
1000 A 7
g /X{ | T
©
= g 4
S - &
10 4 /g/ e g
<
é//
1;;=E_=_=@--—————G— -G — = —G— — G— —O
0,1 T T T T
10 100 1000 10000 100000 1000000

no. of persons

Fig. 5. Indices optimization gain for Query 1

8. Conclusion and Future Work

In the paper the rules concerning creating and taking advantage of indices in
the ODRA prototype have been briefly described. In the presented approach
the optimization is achieved through the described query transformation. The
proposed implementation of indexing in ODRA enables creation and transpar-
ent automatic maintenance of indices facilitating processing of selection pred-
icates based on arbitrary deterministic expressions consisting of path expres-
sions, aggregate functions, class method invocations (taking into consideration
inheritance and polymorphism). All functionalities necessary to provide the
desired behaviour of indices are already implemented and functional. Still, the
ODRA indexing is under development and requires further research. Future
works include employing different index structures (e.g. B-Trees) and imple-
menting new optimization methods taking advantage of indices (e.g. optimisa-
tion of rank queries). Additionally we consider extending indexing capabilities
onto distributed environment using the SDDS method and currently developed
volatile indexing technique.

References

[1] Elmasri R. and Navathe S. B., Fundamentals of Database Systems 4th ed., Pearson Edu-
cation, Inc. 2004, ISBN: 83-7361-716-7.

[2] SBA & SBQL Web pages: http://www.sbql.pl/

[3] Subieta K., Theory and Construction of Object-Oriented Query Languages (in Polish),
PJIIT - Publishing House, 2004, 522.

[4] VERSANT Database Fundamentals Manual, (Release 7.0.1.0) July 2005.

Pobrane z czasopisma A nnges k- Afiotinst (©eiid tpbjaiStonalRSIEHRCS. Plfor all platforms, August 2008.

Data: 13/01/2026 00:15:55(6]
g

[9]

[10]

[11]

[12]

[13]
[14]

[15]

Objectivity for Java Programmer’s Guide, Release 9.3, October 13, 2006.

GemStone Systems, Inc. www.gemstone.com

Meier D., Stein J., Indexing in an object-oriented DBMS, Proceedings of the OODBS,
IEEE Computer Society Press (1986) 171.

Plodzien J., Optimization Methods In Object Query Languages, PhD Thesis. IPIPAN,
Warszawa 2000.

Plodzien J., Kraken A., Object Query Optimization in the Stack-Based Approach, Proc.
of 3rd ADBIS Conf., Maribor, Slovenia, 1999, 303, Springer LNCS 1691.

Burleson D., Turbocharge SQL with advanced Oracle9i indexing, March 26, 2002,
http://www.dba-oracle.com/art_ 9i_indexing.htm

Litwin W., Linear Hashing: a new tool for file and tables addressing, Reprinted from
VLDB-80 in READINGS IN DATABASES. 2-nd ed, Morgan Kaufmann Publishers, Inc.,
1994 Stonebraker , M.(Ed.).

Litwin W., Nejmat M. A., Schneider D. A., LH*: Scalable, Distributed Database System,
ACM Trans. Database Syst. 21(4) (1996) 480.

O’Neil P.E., Quasi D., Improved Query Performance with Variant Indexes, Proceedings
of SIGMOD (1997) 38.

Oracle9i Data Warehousing Guide Release 2 (9.2). Part Number A96520-01.

http://www.tcpdf.org

