Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 06/02/2026 11:27:51

Annales UMCS
one Clgy ) Informatica
S w%o Annales UMCS Informatica AI IX, 1 (2009) Lublin-Poloni
£ 111-122; DOL: 10.2478 /v10065-009-0008-x ublin-tolonia
AR N Sectio Al

Lugy . a98®

http://www.annales.umcs.lublin.pl/

Analysis of communication processes in the
multi—agent systems

Wojciech Pieprzyca*

University of Computer Science and Management,
ul. Fredry 51, 43-346 Bielsko—Biata, Poland
PhD Studies in Computer Science, Faculty of Automatic Control,
Electronics and Computer Science Silesian University of Technology, Gliwice, Poland

Abstract

The article deals with the problems related to the possibility of information exchange in the
multi—agent systems. Therefore it presents a model of coloured Petri net which was created in
order to illustrate and to simulate the agents communication processes as well as exemplary
diagrams which determine the sequences of information exchange between the agents with the

use of the required performatives of KQML.

1. Introduction

A great part of the multi—agent systems effectiveness is based on the appro-
priate cooperation and coordination of the executed tasks. To make it possible
you have to give access to the appropriate methods of the agents communi-
cation, e.g. define the language the agents will use to communicate and to
exchange messages and knowledge. One of the possible languages is KQML
(Knowledge Query Manipulation Language).

The KQML was designed by the group Knowledge Sharing Effort working un-
der the auspices of the DARPA (Defense Advanced Research Projects Agency)

*E-mail address: wojtek@wsi.edu.pl



Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl

Data: 06/02/2026 11:27:51
112 Wojciech Pieprzyca

[1]. In the agent systems this language is used to exchange messages and knowl-
edge between autonomous agents. Queries and orders emitted in KQML act
on the basis of knowledge related to a given agent. In particular, it does not
have to be a knowledge base in the traditional sense, but also so called virtual
knowledge base, which is defined as an ordinary structure of an agent program
or treated as information contained in the standard database. Queries can
enable a check of the knowledge base content, its update etc.

In KQML, a message (an information exchange unit) is defined as a perfor-
mative. This concept, which is derived from the act of speech theory, is defined
in lingustics—related science. In general, performatives can be divided into:

e assertive messages (statements),
e directive messages (commands, questions, suggestions),
e declarative messages (information about the sender’s abilities).

KQML has a predefined set of performatives the actions of which are deter-
mined and cannot be modified. However, it is possible to extend such a set, i.e.
depending on the needs one can define one’s own performatives, the action of
those performatives will be determined within a specified agent system.

In KQML, a performative is a sequence of ASCII characters according to
the grammar which was defined for this language and which is based on the
Polish prefix notation. Every message, apart from its name, which identifies
the performative type, has a set of parameters under the form of :name value
e.g.: sender agentl (parameter defining the name of the sender of the message).
The order of parameters is not relevant. Table 1 presents the parameters of
messages that occur most often in KQML.

Table 1. Basic parameters of performatives in KQML [2]
Parameter | Meaning

:sender The sender of the message

‘receiver The receiver of the message

:reply-with | If this parameter does not occur or its value is nil, it means
that the sender does not expect a reply to the message.
Otherwise, the field contains an identifier to which the sender
will refer while replying to the message (by writing this
identifier in the field :in-reply-with).

:din-reply-to | The identifier defining which message the agent is replying to

:language The language in which the message content is represented

(:content)
:ontology The name of the ontology which the message content (:content)
refers to
:content The message content
:force Determines if the sender can modify the performative

meaning in the future.




Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 06/02/2026 11:27:51

Analysis of communication processes in . .. 113

The message content itself is transparent for KQML and may be represented
in various languages, using the format of ASCII characters or the binary code, it
does not belong to the KQML standard. However, the most common languages
for the content field :contents are the those that enable representation of the
knowledge base content e.g. KIF (Knowledge Interchange Format), Prolog etc.

The KIF language is based on the first order logic. It was developed by the
group KSE (Knowledge Sharing Effort) which works on languages representing
knowledge with an emphasis on the problem of knowledge exchange between
the heterogeneous information systems.

Among the crucial characteristics of the KIF language are [3]:

— implementation which does not depend on semantics,

— expressiveness, a possibility of translating and representing most of the knowl-
edge representation systems, -

— the language is legible for people.

An example of KIF expressions:

e Temperature m1 = 83 Celsius
(= (temperature m1) (scalar 83 Celsius))

e X is a bachelor if he is a man and he is not married
(= (and (man 7x) (not (married 7x))) (bachelor (7x))

2. A message in the KQML

A message in KQML is composed of a list of elements surrounded by a pair
of brackets and separated with spaces. The first element of the message is the
determination of the type of performative, all the following elements of the list
are parameters.

(ask—one
:sender A
:receiver B
:reply—with 101
:language KIF
:ontology book
:content (price ISBN1-58053-605-0 7x))

In the exemplary message above, ask-one is the performative. The sender
of the message is the agent A, the message is sent to the receiver called B.
Additionally, the name of the language (KIF) and the ontology (book) were
determined, they express the message content (:content). The content field



Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl

Data: 06/02/2026 11:27:51
114 Wojciech Pieprzyca

contains a query formulated in the KIF language and related to the price of
a book with the given ISBN number.

3. An agent system model

Message Message Nessage

COut

O]
=@ @@

Message] Tvessage Message Voso Message Message

A

Communication
Channel

Communication Channel

Message @Message
Faclhlator

Fig. 1. Multi-agent system

Message

The presented model was created with the use of the coloured Petri net. Its
main elements are 3 hierarchical sites: Agent — represents the agent’s action,
Communication Channel — represents the way of sending messages between
the agents and Fucilitator — represents the way of executing the tasks by the
facilitator agent.

In order to simplify things the system is considered to have three ordinary
agents (A,B,C) and one facilitator agent (Facilitator). The sent messages are
transmitted to the given agents’ boxes (A MBOX, B MBOX, etc.).

Message Message . Message
m send(#receiver m,F,m) send(#receiver m,F,m) ; m
AOut W » Fn l—————— TransmitF FOut
Out
send(#receiver m,F,m) }
Message
send(#receiver m,Am) AI send #receiver m Am)
Eﬂ—rhn
feceiver m Am
Messagesend(ﬂrece\ver m,B,m)
\ send(#receiver m,B,m)
${ Bin

send(#receiver m,B,m)

\ send(#receiver m,C,m) N sAend(#receiverm,C,m)

Message

v
send(#receiver m,C,m) Message
BOut )—P» TransmitB Message TransmitC 4@

Fig. 2. Communication channel




Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 06/02/2026 11:27:51

Analysis of communication processes in . .. 115

In the communication channel (Fig. 2) the transport of messages between the
agents takes place. The transitions Transmit cause the token (of the message)
to be taken out of the agent—sender’s place Out and to be added to the place
In of the agent—receiver. The message is transmitted only if the function send
determines that the agent is the receiver of the given message.

4. An agent model

Every ordinary agent is modelled as an instance of the subsite Agent (Fig. 3).
During the simulation the user selects, out of nine performatives, the one to be
created. Depending on the selected message type, it is created in one of the
following subsites: prepare msgToA (performatives addressed to other ordinary
agents), prepare msgToF (performatives handled by the facilitator agent) or
prepare standby (the standby performative). A message thus created is trans-
mitted to the place Message Ready from which it can be sent forward to the
communication channel by launching the transition Send Performative.

An incoming message can be received by launching the transition Receive Per-
formative which causes the token (of the message) to be added to the agent’s
box (MBOX). Depending on the type of the sent performative, attached to the
message, the following service takes place on the subsite answerAsk, answer-
Recommend, answerStreamall or answerStandby. In the preliminary state only
the transition Choose performative is active.

Message Message

@
Performative
o} :

answerAsk answerRecommend | [answerStreamal

answer answer answer
ask recommend streamall

msgToA msgToF

prepare prepare
msgToA| msgToF

[_|TanswerStandby
answer
standby

prepare
standby

1"askone++
1'askall++
1'advertise++
1'recruitone++
1'brokerone++ {perf=p,sender=se}
1'recommendone++
1'streamall++
1'broadcast++
1'standby

Choose
performative

pstart()
Performatives @

Performative

Name

Fig. 3. Agent model



Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl

Data: 06/02/2026 11:27:51
116 Wojciech Pieprzyca

5. Basic performatives

Basic performatives enable the creation of simple queries addressed to the
agent’s knowledge base [2].

a) ask—one— the sender asks the receiver to answer the question contained
in the field :content. The answer is created on the basis of the receiver’s
knowledge base.

b) tell- indicates that the content of the field :content is written in the agent-
sender’s knowledge base.

c) ask—all- its action is similar to that of ask-one, but the answer contains
the collection of all the theorems from the receiver’s knowledge base which
correspond to the query sent by the sender in the field :content.

d) stream-—all- its action is comparable to that of ask—all, but in this case the
agent does not send the entire collection of corresponding theorems, it sends
a series of subsequent performatives instead. The last message sent within
the series is the performative eos (end of stream).

Agent A Agent 8

1. sream-all(x)

! :
]
|
AR

Fig. 4. A sequence of message exchanges with the use of the stream-all performative

In the model of Petri net the subsite prepare msgToA (Fig. 5) is responsible
for creating the above messages. On this subsite the transition create message
is launched only for the above mentionned performatives by determining an
appropriate condition of exciting the transition (a so called surveillance, in the
figure the condition of surveillance is surrounded by square brackets).

A message is created with an additional use of the place ID, which is destined
to generate unique id values for each of the sent messages. The operation is
based on the principle of autoincrementation i.e. each following message receives
an id number which is greater by one than the previous number. This place
is shared by all the instances of the agents (a so called fusion place), which



Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 06/02/2026 11:27:51

Analysis of communication processes in . .. 117

Message

create(#perfi#sengerire,id,0,"x")

1
id
create Fusion 1]

message id+1 INT

(#perf i=askone
orelse #perfi=askall

orelse #perf i=streamall) rstart()
andalso re<>(#senderi)] e
Init

Name

Fig. 5. Message creating (ask-one, ask-all, stream-all)

means that the number of the last generated id is global and available in all the
instances of the agents. From the place Receivers there comes the information
about the message receiver. The launch of the transition create message results
in exciting the function create, which creates the final message on the basis of
the received parameters.

The answers to the performatives answer—one, answer—all and stream-—all are
generated on the subsites answerAsk and answerStreamall. In the case of the
performative answer—all all the answers that correspond to the query are put to-
gether and sent as one message. It is not the case of the stream—all performative
for which every answer is sent as a separate message.

Message

if (#perf m=askone)
then create(tell #receiver m #sender m,
0, #replywith m,"P")
else
create(tell,#receiver m ftsender m,
0, #replywith m,"P1 P2|... PN")

create
answer
[#perf m=askone
orelse #perf m=askall]
m
MBOX
Message

Fig. 6. Answer creating (the answer—one and answer—all performatives)



Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl

Data: 06/02/2026 11:27:5]1.1

8 Wojciech Pieprzyca
mList
Create m1 essage
m1:mList answer -Outeady
Message
MessageList

1 create(tell #r¢ceiver m,#sender m,
0, #replywith m{"P1")++

1 create(tell, #r¢ceiver m #sender m,
0, #replywith m|"P2")++

1 create(tell #r¢ceiver m,#sender m,
0, #replywith m{"P3")++

1 create(tell, #r¢ceiver m #sender m,
0, #replywith m|"eos")

Get
MBOX [#perf m=streamall]
message
Message

Fig. 7. Answer creating (the stream—all performative)

5.1. Conditional stream generating answers to the queries.

In certain cases the sender of the query wants to receive the answer as

a stream (like in the case of the stream-all performative) and, moreover, have

an influence on the moment of receiving following answers. It is possible thanks

to the performatives described below [2]:

a)

e)

standby— the sender applies for the preparation of an answer to the per-
formative contained in the field :content. The answer is not generated im-
mediately, but only after the receiver has announced its readiness to give an
answer (using the performative ready)

ready— the sender considers itself to be ready to give an answer to the
performative identified by the content of the field :in—reply—to

next— the sender indicates that it expects a following answer which has
been prepared (according to the performative ready which had been received
earlier)

rest— the sender indicates that it expects the rest of the answers under the
form of a series of performatives contained in one message

discard- the sender discards the other answers which have been generated
in reply to the previous standby order.

In the diagram of Fig. 8 the agent B, having prepared a collection of answers,

does not send them immediately, they are sent one by one as a reaction to
sebsequent performatives next. The performative eos communicates the end of

sending a series of messages. If agent A wants, at a given moment, to receive
all the other answers of the series as one message, it can achieve it sending the



Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 06/02/2026 11:27:51

Analysis of communication processes in . .. 119

Agent A Agert B

1. ganby(Sream-all(x))

2. ready(X)

3 nexd ()

4 tellP i)

5 nex(x)

6 tell(F 2)

7 rest(x)

8 tellP3P4)

9 eos(x)

B e e e e e e
— - - - = -~ = - 01— — - -

Fig. 8. A sequence of message exchanges with the use of the standby performative

rest performative. Agent A can send the discard performative in order to stop
receiving the following answers of the series also.

6. Performatives using the facilitator agent

The facilitator agent (Facilitator) is a special type of agent which has the
information about all the agents that exist in a given system, about their ad-
dresses and abilities and that is why it is vastly used in the processes of searching
agents which have determined abilities and resources and offer access to speci-
fied services. The following performatives are related to the facilitator agent in
KQML [2]:

a) broadcast— the sender asks the receiver to send the emitted performative
to all the agents it is connected to. In the case of a modelled system this



Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl

Data: 06/02/2026 11:27:5]1.2

0 Wojciech Pieprzyca

performative is received by the facilitator agent, which transmits the message
to all the agents of the system.

advertise— the sender announces its readiness to give answers to a deter-
mined type of performatives (determined in the field :content).
broker—one- the sender asks the receiver to transmit, with the purpose of
its execution, the attached performative to one agent which has required
abilities and resources (the agent with such characteristics will have sent the
advertise performative with appropriate parameters). In Fig. 9 the facilitator
agent transmits the execution of the ask—one(x) performative to agent A
because the latter one declared, using the advertise performative, the ability
to handle this kind of queries. Afterwards the answer is sent to the facilitator
agent which transmits it to the sender of the query, i.e. agent B.

Agent A Facilitator Agent B

1

T
| 1: advertise(ask-one(x))

- broker-one{ask-one(x))

3 ask-one(x)

4: tell(P)

5 tel(PY

!
r
|

a4

Fig. 9. A sequence of message exchanges with the use of the broker-one performative

)

e)

recommend—one— the sender asks the receiver to give the name of one
agent which is able to execute the attached performative.

recruit—one— acts in the same way as broker—one, the only difference being
the fact that the answer is sent directly from the agent which has the required
abilities to the sender of the performative recruit—one.

The model of facilitator agent is on the subsite Fucilitator and contains the

mechanisms that offer the possibility to give answers and process the above
described performatives. If the facilitator agent does not find an agent with the
required ability, the sorry performative will be generated as an answer. The
information about the agents’ abilities are stored in the place Advertised.



Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 06/02/2026 11:27:51

Analysis of communication processes in . .. 121
ShortMessage1 P getMessage1 (m)
. Process
nvemsed ‘3 "
A— 4 true emp advertise
A A Empty A
advertised (1 1 false [#perf m=adjertise]
BOOL
(p1,c1.9e1)
(p1.c1.9e1)
e
(p1.c1.4e1) (p1.41,se1)
create(sorry,F,se2,0,id1,c2) p2,c2,se2,id1,id2) m
\ [emp=true]
. o Proces
create(sorry,F,se2,0,id1,c2) p,p2,c2,s€2,id1,id2) message| m
~
[#perf m=regruitone
[p1<>p2 orelse #perf m=recommendone
o e orelse orelse #per| m=brokerone]
c1<>c2]
WY create(p2,se2,sel, A
id2,0,c2) Create (p,p2,c2,5€2,id1,id2)
FOut answer (<
Out | recruit getMessage2(m)
LY [p=recruitone
andalso 5 3
pl=p2 rocesse:
andalso Message ;E';OX
1=c2.
cl=c2] A jsage2
Create (p.p2.c2,52,id1,i02) Vesduge
answer
createf(tell,F,se2,0,id2, recommend m
p2,0,se1,c2) [p=recommendone
andalso
p1=p2 N
andalso Receive
c1=c2] m Performative
create(p2,F,sef, VLl A
id2,0.c2 Create .p2,c2,s€2.id1,id2
) answer & ) ~ m
broker m
[p=brokerone
andalso . Mesgage
p1=p2 (id2.5e2)
andalso Foward Fin
c1=c2] tell
[#perf m=tell
INTXName andalso
#inreplyto m=idq]
create(tell,F,re,0 #inreplyto m #content m)
A 4
— answer
broadcast
[#perf m=broadcast
andalso

#sender m<>re]

Fig. 10. Facilitator agent model

7. Conclusions

The idea of languages based on performatives which determine their func-
tionality is used to exchange information and knowledge between intelligent
program units, e.g. the agents. On the basis of KQML the international stan-
dardization organism FIPA (Foundation for Inteligent Physical Agents) devel-
oped the language FIPA ACL, which nowadays is considered to be a standard
of the communication between agents in the multi—agent systems.

The created model offers a possibility to design a multi-agent system with
the use of the performatives. A series of simulations of sending messages with
the use of all the performatives was conducted. A space of available system
states also was determined. The above described analysis did not lead to the



Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl

Data: 06/02/2026 11:27:51
122 Wojciech Pieprzyca

discovery of any inactive transitions (events) or undesired system states. The
analys’s of the system states proved that all the states resulting from the sys-
tem functionality are possible to achieve. The above described model can be
implemented in any high—level programming language. Until now KQML has
been successfully applied in the environments for designing and programming
agents, such as Saci, JATLite, Jackal and others. An important element of the
presented system, apart from the language itself, is a special kind of facilitator
agent (Facilitator), which, thanks to its knowledge about the possibilities and
the actions of the agents, can coordinate the cooperation of agents within the
whole agent system.

The full version of the presented model of the multi—agent system using the
messages of KQML is available on the website http://wojtek.wsi.edu.pl/petril.
Its initiation requires the tool CPN Tools, version 2.2.0 or higher.

References

[1] Bradshaw J., Software Agents, MIT Press, Cambridge 1995.

[2] DARPA Knowledge Sharing Initiative External Interfaces Working Group: DRAFT Spec-
ification of the KQML Agent—-Communication Language, 1995.

[3] Finin T., Labrou Y., Agent Communication Language, First International Symposium
on Agent Systems and Applications and the Third International Symposium on Mobile
Agents, 1999.


http://www.tcpdf.org

