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Abstract – Efficient data management and distribution in a multicomputer is a
subject of much research. Distributed file systems are the most common solution of
this problem, however, recent works are focused on more general data distribution
protocols. Scalable, Distributed Data Structures (SDDS) are another promising
approach to this issue. In this paper we discuss the efficiency of an implementation
of SDDS in various applications. The results of experiments are presented.

1 Introduction

A multicomputer [1] is a distributed system that consists of a number of computers
(called nodes) which cooperate by exchanging messages and sharing resources over a
fast network. Special software is required to enable a collaboration of all nodes of such
a system. A part of the software should be responsible for efficient distribution and
management of the data stored on a multicomputer. There are many known solutions
of this issue. One of them is a distributed file system like NFS or AFS [1, 2]. It
allows nodes of multicomputer to share the files of data stored on their hard disks.
More general solutions are data distribution protocols like the Chord or the Symphony
[3, 4]. Such a protocol is responsible for locating and assigning data to nodes of a
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30 SDDSfL vs. local disk – a comparative study for Linux

multicomputer regardless of where the data is actually stored. It is especially suitable
for peer-to-peer networks. Scalable, Distributed Data Structures (SDDS) [5, 6] are
another approach to the problem of sharing data across a multicomputer. SDDS use
hashing or range partitioning to address the data located in RAMs of the nodes. The
advantages of SDDS are scalability and fast access to data which is particularly valuable
as far as transactional databases are concerned.

In our previous work SDDS for the Linux operating system (the SDDSfL)
were presented which is partially implemented on the operational level [16]. The
implementation was subjected to various tests in order to evaluate its efficiency
for databases. The tests results were promising. However, the gap between the
performances of SDDSfL and the local disk was surprisingly low.

The aim of the paper is to investigate whether or not SDDSfL could work
considerably faster than local disks for the applications from beyond the scope of
databases. To this end two problems computationally hard for local disk, namely
pattern matching and sorting, are implemented on SDDSfL and on up to date disk
systems and thoroughly compared. The next section contains a short overview of
previous works. In section 3 the motivation for this work is given. Section 4 describes
SDDS and SDDSfL briefly. Section 5 addresses the SDDSfL efficiency evaluation
methods. The results of experiments are described is section 6. The paper ends with
conclusions.

2 Related work

The problem of distributing data across multicomputer nodes may be solved in many
different ways. A distributed file system is one of the examples. The other is a protocol
for data distribution. There are many distributed file systems. Each of them is designed
with different requirements in mind. The Network File System (NFS) [1, 2] allows many
clients to access files stored on a local disk of only one server. It is designated for Local
Area Network and a rather small number of clients. OceanStore [7], on the other hand,
is a distributed file system which is used in peer-to-peer networks that are built over the
Internet. Nodes in such networks may join and leave at any moment, and for that reason
OceanStore distributes files over many servers. It is also fault tolerant and assures
privacy. Distributed file systems are very common in multicomputer environments
because files are one of the most flexible and useful abstract data structures.

Protocols for data distribution are a quite new approach. They are applied on lower
level than the distributed file systems but they are also more universal. Such protocols
are available for user applications through special libraries which create an abstraction
layer. This abstraction layer simulates some data structure, usually a distributed hash
table (DHT). It is possible to build a distributed file system on the top of such DHT
(OceanStore is one of them). Data distribution protocols are usually applied to peer-to-
peer (P2P) networks. The Chord protocol [3] organizes nodes of such a network into a
ring. Every node in a ring is given a unique identifier, which is used for addressing and
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assigning data to the node. Nodes may join or depart from the network at any time.
The Symphony [4] is a similar protocol but it uses the knowledge about Small World
Phenomenon to optimize a long range routing of data packages. Data distribution
protocols do not specify where or how the data should be stored inside a node.

Scalable, Distributed Data Structures [1] are a similar solution to the Chord and
the Symphony in the way that they are visible to user applications as DHT. However,
SDDS require that data should be usually kept in RAMs of nodes and stored on hard
disk only when necessary. SDDS will be described in more detail in section four of
this paper. We have developed our own implementation of SDDS for Linux-based
multicomputers (SDDSfL), which is accessible to user applications as a block device.
In that way, it brings together some features of distributed file systems and protocols
for data distribution. We have also tested our implementation in order to evaluate its
efficiency for different types of applications. Efficiency of other SDDS implementations
was evaluated by other authors. Mokadem and Litwin designed and measured the
efficiency of a special string matching algorithm for SDDS [8]. Gupta et al. [9] evaluated
simple data operations (inserting, getting) for a variant of SDDS called LH*lh. Gribble
et al. [6] proposed and assessed their own version of SDDS for building distributed
Internet services.

3 Motivation

Most of the work on evaluation of SDDS was done around year 2000 or earlier.
Then an access to single data distributed over RAMs of a multicomputer was much
faster than an access to the same data stored in a local hard disk of a single server
[5]. However, much has changed in the technology of hard disks and network devices
since that time. Moreover, usually an access to a single data is not required, except
for transactional databases. In most data manipulation algorithms packages of data
are processed which may considerably diminish mean time of access to one item of the
data.

The Scalable Distributed Data Structure for Linux (SDDSfL) is a variant of
SDDS but also has some features of a block device. Actually, it is a hybrid solution
engaging both operational and user levels of Linux [16]. As such it is very attractive
for development of open source distributed applications. In [16] its usefulness for
distributed transactional databases was investigated. An answer to the question of
how it would work for another kind of applications particularly for data manipulation
ones is of great importance. In the paper we evaluate the efficiency of such a hybrid
solution for different classes of data manipulation algorithms. We also assess the
impact of changes in technology on the efficiency of SDDSfL and block devices.
Summarizing, the goal of our research is to discover what sort of applications may
benefit form using the SDDSfL.
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4 Implementation of SDDSfL

4.1 SDDS

Multicomputer systems are often used in applications that need huge data storage
with a short access time. Local hard disks are not sufficient in such situations. Scalable,
Distributed Data Structures [5] were created as a possible solution for this issue. All
nodes of a multicomputer that use SDDS are divided into two nonexclusive groups:
servers and clients. SDDS store records of data in buckets of the same size located
in RAMs of servers. Data from a bucket is saved on a hard disk only when necessary
e.g. when the server is shutting down. Scalable, Distributed Data Structure adjusts
its capacity to current needs by splitting the buckets. When a bucket is overloaded it
sends a message to a Split Coordinator (SC). The SC takes a decision which bucket
should split. During a split operation a new bucket is created and it gets about half of
the records stored in the bucket chosen by the SC. The client uses a special function to
address records in buckets. There are two kinds of SDDS that use different addressing
functions:

• RP ∗ – the client uses range partitioning to locate the data [10],
• LH∗ – the client uses linear hashing to locate the data.

Every client has its private image of SDDS structure. After the split this image
becomes outdated and the client may send request to an incorrect bucket. In such
situations the message is forwarded to the correct bucket and the client receives
Image Adjustment Message. The IAM contains new parameters for client’s addressing
function, which update its SDDS image. There is no single point of failure in SDDS
structure except for the SC because no central directory is used for addressing.
However, there are SDDS architectures (like RP) that do not require the SC. Other
SDDS architectures are resistant to control and data failures [11, 12]. Original SDDS
concept was inspiration for similar solutions, especially for Scalable, Distributed Data
Structures for Internet Services [6].

4.2 SDDSfL

The Scalable Distributed Data Structure for Linux is based upon LH* version of
SDDS. Each bucket uses open addressing for managing records therefore this version
of LH* SDDS may be called LH*OA. A SDDSfL client is implemented on the operating
system level as a kernel module. Most of the devices in Linux are accessible to user
space processes through special files [13]. There are two kinds of such files: one for
character devices and the other for block devices. A block device is a device that
transmits data using large units called blocks. Such a device also enables random
access to information stored in it. A single block consists of smaller data units called
sectors. The typical size of one sector is 512 bytes. The largest blocks in Linux may
have the size of eight sectors, which gives 4096 bytes (4KiB). The SDDSfL client creates
an artificial block device which allows the Scalable Distributed Data Structure to look
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like a hard disk. It means that any user application that works with files may use it
at once. No changes in application source code are needed. The blocks of data are
treated as records for SDDS. Almost all data transmissions in SDDSfL are done with
the use of UDP/IP protocol. The only exception is communication between servers
during a split operation, which is done using the TCP/IP protocol. The use of SDDSfL
is limited to clusters.

5 Evaluation method

We used two kinds of applications for tests. The first one was a pattern matching
program which implements the Boyer-Moore algorithm. It is one of the most frequently
used pattern matching algorithms and requires sequential data access. The program
was tested with the files of the sizes of 1MiB, 2MiB, 4MiB, 8MiB, 16MiB, 32MiB,
128MiB, 256MiB, 512MiB, 768MiB and 1024MiB. In every file the program searched for
several patterns of different lengths (characters number). The second kind of tests was
done with the use of file sorting program. The program used the Quicksort algorithm
which requires random access to data. The files for sorting consisted of records of 2KiB
size or 4KiB byte size. We used several such files which were of different sizes: 1MiB,
8MiB, 16MiB, 32MiB, 64MiB, 128MiB, 256MiB, 512MiB and 1024MiB. Every test
was repeated several times and we took the average of the results of all series. In our
experiments we used a multicomputer build of PC computers, each with 1.5GB random
access memory and AMD Athlon 64 3200+ processor, as a test environment. We tested
SDDSfL with the Gigabit (1Gb) local area network (LAN). Every node in the network
runs under control of the Linux 2.6.20 (Fedora 6) operating system and is equipped
with the Intel PRO/1000 GT Gigabit network adapter. The SDDSfL results were
compared with those of other block devices, such as USB flash drive (Kingston Data
Traveler 8GB), SATA hard disk (Seagate SATA 2, 80GB), PATA disk (Western Digital
Caviar 80GB) and Ultra320 SCSI disk (Seagate 73GB 15000 rpm). The maximum size
of SDDSfL block device was 4GiB (four servers were used). The Ext3 file system was
used with the all data medium.

6 Experimental results

Fig. 1 - 4 show the results of pattern matching applying tests with the use of Boyer-
Moore algorithm. For the four character pattern SDDSL is slower than the SATA
disk and the USB flash (pendrive), but with the increasing length of the pattern the
efficiency of SDDSfL improves. For longer patterns it is at least one of the most efficient
block devices. In the case of the longest pattern (1024 characters), it is only second to
the SCSI disk. Summarizing, the longer is the pattern the better is the performance
of SDDSfL.

The pattern matching is an application which requires mostly sequential access to
data. For the test which requires random access we have chosen sorting with the use
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Fig. 1. Pattern matching results, pattern size - 4 characters.

Fig. 2. Pattern matching results, pattern size - 128 characters.
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Fig. 3. Pattern matching results, pattern size - 512 characters.

Fig. 4. Pattern matching results, pattern size - 1024 characters.
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of Quicksort algorithm. The USB flash drive was excluded from the test because of its
limited number of write operations. The results are shown in Fig. 5-7.

Fig. 5. Results of the Quicksort sorting (record size = 2048B, I/O scheduler
= cfq).

Fig. 6. Results of the Quicksort sorting (record size = 4096B, I/O scheduler
= noop).
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Fig. 7. Results of the Quicksort sorting (record size = 4096B, I/O scheduler
= cfq).

We have tested the sorting with two kinds of I/O scheduler. The first one - CFQ is
a default I/O scheduler for the Linux system. It performs an advanced optimization of
requests before they are sent to hard drive [15]. The second one - NOOP is a simple I/O
scheduler which only merges adjective requests [15]. The results show that hard drives
benefit form the use of an advanced I/O scheduler. The SDDSfL does not use any such
system and has no benefit from hardware level disk cache memory. Summarizing, the
bigger are records in the sorted file, the better is the performance of SDDSfL. This is
like in the case of pattern matching.

7 Conclusions

The results of the experiments show that SDDSfL could outperform the SATA and
PATA disks which are commonly used in the desktop systems. However, this is only
true for the applications which operate on large files consisting of relatively big records.
Those applications include also transactional databases [16]. SDDSfL may also compete
with more expensive server solutions like the SCSI drivers. The hard disks performance
decreases with aging of head positioning mechanism. SDDSfL is free from such an issue.
Implementation of original SDDS was tested for pattern matching by Mokadem et al.
[8]. However, in their work the problem was defined differently and the implementation
achieved good results because of parallel queries which are not implemented in SDDSfL.
There is also another constraint that SDDSfL must respect. The maximum size of data
transmitted between the clients and the servers is limited to the size of memory page
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(usually 4KiB). This limitation is imposed by the construction of the Linux kernel
block layer. SDDSfL tends to be more efficient for the applications which require
random access to data. The Boyer-Moore algorithm uses heuristic methods for pattern
matching. In the case of short patterns the heuristics is ineffective and the algorithm
searches the file sequentially. For long patterns the search is also sequential but it is
done more efficiently. The heuristics allows the algorithm to skip large parts of file in
search for a pattern occurrence. This is more suitable for SDDSfL than for hard disks
as Fig. 1-4 show.

From the viewpoints of scalable distributed application developers, it is worth
noticing that the difference between the performances of all tested devices (including
SDDSfL) is relatively small. According to the specifications the maximal bandwidth
of PATA-100, Ultra-320SCSI, SATA II and Gigabit Ethernet interfaces is 800 Mbit/s,
2.6 Gb/s, 3.0 Gb/s and 1.0 Gb/s respectively. Those values are of insignificant
practical meaning. The performance of hard disks is determined by their mechanical
parts. The Gigabit Ethernet efficiency depends on the current network traffic and
quality of overall network structure. The transfer of 4KB of data takes 98 s (seek-time
+ rotation delay + transfer time) in the case of 5400 RPM disks (our SATA 2
and PATA-100 disks), 65 s in the case of 7200 RPM disks and 43 s in the case of
15000RPM disks (our Ultra-320SCSI disk), which explains good experimental results
of Ultra-320SCSI disk. A simple test with the use of ping command showed that the
transfer time of 4KB packet in our network takes on average 224 s. The experiments
also show that the PATA-100 disk is surprisingly better than the SATA II disk. This
could be explained by the fact that we used the three - year old SATA II disk which
is used as a local disk in a frequently used desktop computer, while the PATA-100
disk is quite new and it is only used for tests. The efficiency of SDDSfL is also
dependent on network interfaces and their software drivers. During the tests we have
switched from the integrated network interfaces to the Intel PRO 1000/GT networks
adapters which resulted in significant improvement of SDDSfL performance. The
lack of hardware level cache memory may also be the cause of the worse SDDSfL
results than expected. Further experiments are required to prove it. The SDDSfL
efficiency may be hampered by the traffic in local network. The tests have shown that
the I/O scheduler has small influence on the performance of hard disk in the case of
application that requires random access to data, but in other applications it may be
significant. Eventually, solutions for the critical section problem used in the SDDSfL
kernel module may play a significant part in efficiency of the whole system. That also
should be tested in the future.
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