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Abstract – The TRQR program [1–4] simulates trajectories of charged particles (electrons or
ions) in the electromagnetic field. TRQR is based on the Particle-In-Cell method whose basic
guideline is the use of computational particles (called macro particles) that represent a large
number of real particles of the same kind moving in the same direction. The program calculates
particles charge density distribution and potential distribution for chosen ion sources, analyses
particles behaviour in the electromagnetic field, describes the process of beams from the source
extraction. A number of factors influences simulation results. In order to improve efficiency
the program has been parallelized. This paper presents the process of converting chosen parts
of the TRQR program into the multi-thread version. In the first step the program was moved
from Fortran 77 to C++. Then it was parallelized using the Pthread library with the standard
API for C++ contained in the POSIX IEEE 1003.1c standard. Each of threads has its own
stack, set of registers, program counter, individual data, local variables, state information. All
threads of particular process share one address space, general signal operations, virtual memory,
data, input and output. The Mutex functions were used as a synchronization mechanism. This
paper presents the analysis of a particular piece of main program that implements computations
of particles density distribution. The paper presents execution time dependencies for different
simulation parameters such as: the number of macro particles, size of the simulation mesh and
the number of used threads.

1 Introduction

Due to the complexity of physical processes, computer simulations of plasma behaviour in
ion sources are still a great challenge for programmers. One of the methods of computing the
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30 POSIX threads parallelization for example of Particle-In-Cell density . . .

trajectories of charged particles in the electromagnetic field is the Particle-In-Cell method. In
the PiC method a large number of particles such as ions or electrons in plasma or beam is
represented by a smaller, numerically tractable number of so called ‘macro-particles’. Each
macro-particle behaves like a single particle of certain kind, but carries a charge large enough
to represent all real particles.

This paper presents the results from migration of one piece of TRQR program to parallel
mode. First, the program was moved from Fortran 77 to C++ and then parallelized using the
Pthread library. The paper presents the results of simulations for different parameters such as
a number of used threads, a number of macro particles, mesh size.

2 TRQR - principle of operation

The TRQR program was developed in order to study plasma behaviour as well as the process
of extraction and formation of the ion beams emited from the plasma ion sources. The method
implemented for computer simulation consists of the following steps:

(1) Setting the systems geometry such as a number of particles etc. and generating initial
distribution for all kinds of particles.

(2) Calculations of particles density distributions for chosen ion sources using the PiC
method.

(3) Solving the Poisson equation for the charge density obtained in the previous step and
the boundary conditions imposed by electrodes.

(4) Calculation of electrical field in the grid points.
(5) Solving the Lorentz equations of motion for each particle.
(6) Generating new particles if it is needed due to hits on electrodes and plasma chamber

walls.

This procedure, steps from 2 to 6, continues until a final state is achieved[3].
The special subject of interest for this paper is the particle-in-cell (PiC) method the second

step of simulation is based on. In the PiC method a large number of particles such as ions or
electrons in plasma or beam is represented by a smaller, numerically tractable number of so
called ‘macro particles’. Each macro particle behaves like a single particle of certain kind, but
carries a charge large enough to represent all real particles. The simulation space is divided
into small regions creating a spatial mesh. The method weights particles to grid points using
a particle shape factor to obtain charge on the grid. This distribution process is carried out
with one of two possible schemes. The first method called nearest grid point (NGP) assigns
the macro-particle charge to the point of grid that is the nearest to the particles position. In the
second one called cloud-in-cell (CiC) fractions of macro-particle charge are assigned to 8 (in
the case of 3D calculations) nearest in the mesh grid points. Even better charge distribution is
obtained if in the CiC method the macro particle charge is distributed among 27 nearest grid
points [4].
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Fig. 1. Block scheme for the TRQR program.

3 POSIX threads API

In architectures with shared memory threads can be used to implement parallelism. For the
Unix systems, a standardized C language threads programming interface has been specified
by the IEEE POSIX 1003.1c standard. The already mentioned POSIX standard from 1995 is
included in the Unix system distributions.

Technically, a thread is defined as an independent stream of instructions that can be
scheduled to run as such by the operating system. The comparison between threads and
processes is presented in Table 1.

What needs to be emphasized is that in the case of threads - reading and writing to the
same memory locations is possible, and therefore requires explicit synchronization by the
programmer.

The subroutines which comprise the Pthreads API can be informally grouped into three
major classes (included in the library Pthreads):

(1) Thread management – the group of functions that work directly on threads - creating,
detaching, joining, etc. Here are also included the functions that set thread attributes.

(2) Mutexes (abbreviation for ‘mutual execution’) – the functions that deal with
synchronization. The Mutex functions provide for creating, destroying, locking and
unlocking mutexes and also setting or modifying mutex attributes.

(3) Condition variables – the functions that address communications between threads
that share a mutex. They are based upon programmer specified conditions. This
class includes the functions to create, destroy, wait and signal based upon specified
variable values. In this paper condition variables are only mentioned without further
analysis as they were not implemented in the pthread parallelization presented in this
paper.
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Table 1. Process and thread features comparison.

PROCESS THREAD

• Created by the operating system
• Requires a fair amount of overhead
• Contains information about program

resources and program execution state
that include:

– Process, process group, user and
group IDs,

– environment,
– working directory,
– program instructions,
– registers,
– stack,
– heap,
– file descriptors,
– signal actions,
– shared libraries,
– inter-process communication tools.

• Use and exist within the process-creator
resources

• Duplicate only the bare essential
resources that enable them to exist as
executable code

• Share with other threads in the same
process:

– Global and static variables,
– heap and dynamic variables (Two

pointers having the same value point
to the same data),

– operating system resources (files),
– process instructions.

• Each thread has a unique:
– Set of registers, stack pointer,
– automatic variables,
– Stack for local variables,
– priority,
– thread ID.

4 Thread creation

Initially main() program comprises a single thread. All other threads must be created
explicitly by the programmer. Once created, threads are peers and may create other threads.
There is no implied hierarchy or dependency between them. A new thread is created by calling
int pthread_create(pthread *thread, const pthread_attr *attr, void *(*start_routine)(void *),
void *arg) subroutine. The arguments of this function in order of appearance stand for: unique
identifier for the new thread returned by the subroutine, attribute object that may be used
to set thread attributes, the C routine that will be executed by thread once it is created, a
single argument that may be passed to start_routine. Attribute parameter set to NULL means
that default attributes are used, otherwise it defines members of struct pthread_attr_t that
includes: detached state, scheduling policy, stack address and size etc. As it was mentioned
before pthread_create() routine permits a programmer to pass only one argument to the thread
start routine. To overcome this limitation a structure should be created which contains all
of the arguments to be passed. Then just a pointer to that structure should be passed to
pthread_create() routine.
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There is presented below the fragment of code, which creates NTH threads with a default set
of parameters which will execute routine thread_fun_dens with the parameters from the proper
cell of matrix tab_th_data.

s t r u c t t h _ d a t a {
long idoms ; / / s t a r t i n g c e l l o f g l o b a l d e n s i t y m a t r i x
long idome ; / / en d i ng c e l l o f g l o b a l d e n s i t y m a t r i x
long NNion ; / / number o f i o n s per t h r e a d

} ;
p t h r e a d _ t t h _ i d s [NTH ] ; / / m a t r i x t h a t c o n t a i n s t h r e a d s i d s
t h _ d a t a t a b _ t h _ d a t a [NTH ] ; / / m a t r i x o f t h r e a d s s p e c i f i c data ,

pa s s e d as a s t r u c t u r e p o i n t e r t o t h e e x e c u t e d r o u t i n e

void ∗ t h r e a d _ f u n c _ d e n s ( void ∗ p t r ) {
. . .
p t h r e a d _ e x i t (NULL) ;

}

void main ( . . . ) {
. . .
f o r ( i n t w=0; w< NTH; w++)

p t h r e a d _ c r e a t e ( &t h _ i d s [w] , NULL, t h r e a d _ f u n c _ d e n s , ( void

∗ )&t a b _ t h _ d a t a [w] ) ;
. . .

}

5 Threads synchronization and termination

There are several ways in which a thread may be terminated. The most common is
either when the thread returns from its starting routine or when the thread makes call to the
pthread_exit() subroutine. Typically, the pthread_exit() routine is called after a thread has
completed its work and is no longer required to exist. If main() finishes before the threads
it has created, and exits with pthread_exit(), the other threads will continue to execute.
Otherwise, they will be automatically terminated when main() finishes. The programmer may
optionally specify a termination status, which is stored as a void pointer for any thread that
may join the calling thread.

One way to accomplish synchronization between threads is so called ‘joining’. The int
pthread_join(pthread_t th, void **thread_return) subroutine blocks the calling thread until
the thread specified by th argument terminates. The programmer is able to obtain, via the
second argument, the target threads termination status. It is possible though only if it was
explicitly specified in the target thread call to pthread_exit routine. A joining thread can match
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only one pthread_join() call. It is a logical error to attempt multiple joins on the same thread.
In the following figure the scheme of program course is presented, which after creating two
worker threads waits for them to exit and then resumes its execution.

Fig. 2. Threads synchronization.

The fragment of main function that stops program execution until all created threads exit
would have the following form:

void main ( . . . ) {
. . .
f o r ( i n t i i =0 ; i i < NTH; i i ++)

p t h r e a d _ j o i n ( t h _ i d s [ i i ] , NULL) ; / / e x e c u t e as much
p t h r e a d _ j o i n s as p t h r e a d _ c r e a t e
/ / were e x e c u t e b e f o r e

. . .
}

6 Mutual execution

Mutex variables are one of primary means of implementing thread synchronization and for
protecting shared data when multiple writes occur. A mutex variable acts as a ‘lock’ or a
semaphore protecting access to a shared data resource – critical section. With the basic mutex
concept only one thread can own – which means lock – a mutex variable at any given time.
Thus, even if several threads try to lock a certain mutex only one of them will succeed, booking
access to the protected resource for himself. The shared data resource is available again not
till then mutex owner unlocks that mutex. The presented operation is a safe way to ensure that
when several threads update the same variable, the final value is the same as what it would be
if only one thread performed the update.

The typical sequence of steps in the use of a mutex is as follows:

(1) a mutex variable is created and initialized,
(2) several threads attempt to lock the mutex,
(3) only one of them succeeds and that thread owns the mutex,
(4) the owner thread performs a set of actions,
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(5) the owner unlocks the mutex,
(6) another thread acquires the mutex and repeats the process,
(7) finally the mutex is destroyed.

The mutex variable must be declared with the type pthread_mutex_t and initialized before it
can be used. Initialization can take two forms:

(1) static with the instruction
pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER,

(2) dynamic with int pthread_mutex_init(pthread_mutex_t *mutex, const
pthread_mutexattr_t *mutexattr) routine.

Initially mutex is unlocked. To establish different from default (specified as
NULL) properties for the mutex the second argument of the pthread_mutex_init
routine should be used. Mutex that is no longer needed should be released with
pthread_mutex_destroy(pthread_mutex_t *mutex) routine.

Three standard routines are used to manage mutex access. The pthread_mutex_lock(pthread
_mutex_t *mutex) routine is used to acquire lock on the specified mutex variable. If the mutex
is already locked by another thread, this call will block the calling thread until the mutex
is unlocked. The pthread_mutex_trylock(pthread_mutex_t *mutex) will attempt to lock a
mutex. However, if the mutex is already locked, the routine will return with ‘busy’ error
code. The pthread_mutex_unlock(pthread_mutex_t *mutex) will unlock a mutex if called by
owning thread. An error will be returned if the mutex has already been unlocked or if the
mutex is owned by another thread[5].

The following example presents the way mutexes were used in our simulation.

p t h r e a d _ m u t e x _ t ∗∗∗ t ab_mutex ;
. . .
f o r ( i n t x =1; x<=Nxx ; x ++)

f o r ( i n t y =1; y<=Nyy ; y ++)
f o r ( i n t z =1; z <=Nzz ; z ++) {

i n t r e s = p t h r e a d _ m u t e x _ i n i t (& tab_mutex [ x ] [ y ] [ z ] ,NULL) ;
}

. . .
/ / c r e a t i n g t h r e a d s w i t h p t h r e a d _ i n i t r o u t i n e
. . .

/ / a p i e c e o f code somewhere i n t h e t h r e a d
s t a r t _ r o u t i n e

i n t e r r = p t h r e a d _ m u t e x _ l o c k ( &tab_mutex [ Nx ] [ Ny ] [ Nz ] )
;

d e n s i t y _ q [ Nx ] [ Ny ] [ Nz ] [ k j ] += i s ;
i n t e r r 2 = p t h r e a d _ m u t e x _ u n l o c k ( &tab_mutex [ Nx ] [ Ny ] [ Nz

] ) ;
. . .
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f o r ( i n t x =1; x<=Nxx ; x ++)
f o r ( i n t y =1; y<=Nyy ; y ++)

f o r ( i n t z =1; z <=Nzz ; z ++) {
i n t r e s = p t h r e a d _ m u t e x _ d e s t r o y (& tab_mutex [ x ] [ y ] [ z ] ) ;

}

7 Parallel mode calculations

The environment for simulations was the Intel Xeon processor 4cores x 2, 16BG RAM,
Mandriva operating system and gcc 4.1.2 compiler. In the first step the program was moved
from Fortran 77 to C++. Then it was parallelized using the Pthread library with the standard
API for C++ contained in the POSIX IEEE 1003.1c standard.

During the simulation process the measure that was analysed was the simulation time. It
is a formal but very relative measure as sometimes the process of creating parallel version
may not be cost effective contrary to the gained reduction in the simulation time. The second
performance criterion that was adopted for plasma density thread parallelization is speedup
that is described by the formula S(p) = T (1)

T (p) , where p stands for a number of threads, T (1)
and T (p) - the simulation time with one or p threads (adequately) [6].

8 Results of simulations

As it was presented in paper [7] using the simplest charge density distribution technique and
a large number of macro particles is the best solution as far as charge density calculations are
concerned. For example, using NGP and 100 mill of macro particles gives better results (i.e.
more homogeneous distributions) in less time than using the CIC method and 20 mill of macro
particles. That is why all results presented in this paper are calculated for the NGP method with
a different number of macro particles, different sizes of spatial mesh and a different number of
threads used in the parallelization process.

Fig. 3 presents the simulation time for the NGP method with different numbers of macro
particles and the mesh of size 100x100x100. Red line in each picture stands for the execution
time of the sequential version of the algorithm.

Analyzing the above graphs one can conclude that using only two threads gives the execution
time close to the sequential version and that using eight threads, which equals the number of
available processors, gives the best reduction of execution time. Further improvement of a
number of threads, nine and above does not give further reduction of execution time.

As the graphs obtained for simulations with a different number of macro particles show
similar results, Fig. 4 presents speedup calculated only for one of them, the one for 200 mill
macro particles. It confirms that speedup close to 1 (which means close to the sequential
execution time) is for 2 threads and the highest speedup is gained for 8 threads.

In the next step the size of the mesh was changed to 50x50x50. Two simulations were done.
First for 200mill of macro particles – Fig. 5(a). In the second one – Fig. 5(b) - the number
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(a) (b)

(c) (d)

Fig. 3. Time of charge density calculations as a function of the number of threads
used for the parallel run, using the NGP method, mesh of size 100x100x100 and a
different number of macro particles: a)2mill, b)20mill, c)100mill, d)200mill.

of particles was changed proportionally to the change in mesh size, which gave the number of
approximately 25mill macro particles. For both simulations speedup factors were calculated
and presented in Fig. 6(a) and 6(b) respectively.

Analyzing Fig. 5 and 6 it can be noticed that the maximum speedup gained with the
parallelization changed dropped by about 40% compared to the previous simulation. Also
the number of threads required to gain the execution time close to sequential changed from 2
to 4.

Further tests were carried out for different sizes of mesh from 200x200x200 down to
15x15x15. For each of them the parallel version run for 200mill macro particles and 8 threads
were executing calculations. The red line stands for the execution of sequential version of the
algorithm.
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Fig. 4. Speedup for NGP parallel run, for 200mln. macro particles mesh of size
100x100x100.

(a) (b)

Fig. 5. Time of charge density calculations versus the number of threads used for the
parallel run, using the NGP method, mesh of size 50x50x50 and different number of
macro particles: a)200mill, b)25mill.

Fig. 7 presents that for the meshes of size 80x80x80 and bigger ones give quite good
execution time reduction while parallelized. In the case of meshes of size 40x40x40 and
smaller running the parallel version of algorithm gives no benefit of reduction of execution
time.

Final tests were carried out for the asymmetrical mesh of dimensions 128x64x128 and 100
mill macro particles. The aim of this test was to examine if the geometry of the mesh has
any influence on the algorithm performance. Fig. 8 presents the results of that simulation –
both simulation time and speedup. The environment of this simulation is similar to the one
presented in Fig. 3(c). The results for both mentioned simulations are very close which gives
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(a) (b)

Fig. 6. Speedup for NGP parallel run, for a) 200mill. b) 25mill. macro particles,
mesh size 50x50x50.

Fig. 7. Time of charge density calculations versus the mesh size with the number
of threads used for the parallel run equal 8, using the NGP method and 200mln. of
macro particles.

a conclusion that only a number of cells influences the simulation time whereas the mesh
geometry has no influence on POSIX thread parallelization performance.
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(a) (b)

Fig. 8. Time of charge density calculations and speedup for the parallel run, using
the NGP method, the mesh of size 128x64x128 and 100mill. of macro particles.

9 Conclusion

A direct advantage of program parallelization is more effective time use which relates to the
time assigned to the simulation process. This paper presents the POSIX Pthread library as one
of the available methods of parallelization. So far Pthread parallelization is implemented only
for a part of TRQR program which is charge density calculations, but it gives quite acceptable
results encouraging for further research.
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