
Annales UMCS Informatica AI XI, 1 (2011) 33–41

DOI: 10.2478/v10065-011-0022-7

Comparative evaluation of performance-boosting tools for

Python

Jakub Swacha1∗

1Institute of Informatics Technology in Management, University of Szczecin,

Mickiewicza 64,71-101 Szczecin

Abstract – The Python programming language has a number of advantages, such as simple and

clear syntax, concise and readable code, and open source implementation with a lot of extensions

available, that makes it a great tool for teaching programming to students. Unfortunately, Python,

as a very high level interpreted programming language, is relatively slow, which becomes a nuisance

when executing computationally intensive programs. There is, however, a number of tools aimed at

speeding-up execution of programs written in Python, such as Just-in-Time compilers and automatic

translators to statically compiled programming languages. In this paper a comparative evaluation of

such tools is done with a focus on the attained performance boost.

1 Introduction

Python [1] is a relatively new programming language praised for its educational

capabilities [2]. It is simple: its keyword list is limited, and the syntax does not

contain unnecessary formalities. Program lines do not end with semicolons, and there

are no logical brackets (like begin / end of Pascal or braces of C), instead of which,

Python uses indentation to control the course of program execution - in this way it

avoids problems with the unpaired brackets and at the same time forces students to

properly format the source code. Python does not require variables to be declared -

a typical source of mistakes made by novice programmers. It is very easy in Python

to use complex data types, such as lists and dictionaries. Thanks to that, Python

makes possible very simple implementations of algorithms that use such data types,

which would be much more difficult to implement in other languages. Python is a very

concise and efficient language. According to S. McConnell’s studies, a single Python

∗jakubs@uoo.univ.szczecin.pl

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 12/01/2026 18:05:12

UM
CS

34 Comparative evaluation of performance-boosting tools for...

expression corresponds on average to six C expressions [3]. A similar rate was measured

for Perl, which, in contrast to Python, is known for its hardly readable source code.

Python has been ported to many system platforms and is available free from its official

website [4].

The problem with Python is its slowness. Antonio Cuni points the following reasons

for which Python is intrinsically slow [5]:

1. Interpretation overhead (due to code translation);

2. Boxed arithmetic and automatic overflow handling (even simple data types are

treated as objects);

3. Dynamic dispatch of operations (the types of arguments are identified on runtime);

4. Dynamic lookup of methods and attributes (the class components are identified on

runtime);

5. "The world can change under your feet" (classes and functions can be defined,

undefined and redefined on runtime);

6. Extreme introspective and reflective capabilities (that allow not only inspection of

a running program environment but also its modification).

The slowness often becomes a nuisance, especially when implementing classic algo-

rithms, which often consist of large number of repetitions of simple operations. When

developing industrial applications, one would resort to another programming language,

but in the case of education, when one wants to keep with Python for its other advan-

tages, he or she has to look for tools that can make Python programs run faster.

2 The competing solutions

The solution to the slowness of Python is compilation. Although some of the language

features make it virtually impossible to compile every line of every Python program,

it can be done in most cases.

The compilation may be Ahead-Of-Time (AOT), or Just-In-Time (JIT). The AOT

compilation is done once and is always static (based merely on the source code analysis).

The JIT compilation is done every time the program is run and may be dynamic

(adjusting the compiled code based on its actual execution).

Currently, there are seven popular tools that seem to handle this problem in some

way:

1. Cython [6], a programming language based on Python that can be automatically

translated to C or C++ and then compiled.

2. Iron Python [7], a .NET-based implementation of Python and as such making use

of the .NET’s JIT compiler.

3. Jython [8], a Java-based implementation of Python and as such making use of the

Java Virtual Machine (JVM)’s JIT compiler.

4. Psyco [9], a Python module capable of compiling Python functions using a special-

ized JIT compiler.

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 12/01/2026 18:05:12

UM
CS

Jakub Swacha 35

5. PyPy [5], an RPython-based implementation of Python, capable of automatically

generating tracing JIT compilers.

6. Shedskin [10], a tool that can automatically translate Python code to C++ and

then compile it.

7. Unladen Swallow [11], a C-based implementation of Python, making use of the Low

Level Virtual Machine (LLVM [12]) JIT compiler.

There are also other, less popular tools of similar type, such as Pyrex [13] and

py2llvm [14]. They were not included in the comparison; the former, because it is

closely related to Cython [6, 13], the latter due to its very early stage of development

[14].

Table 1 lists the most important features of the seven Python performance boosters

mentioned above.

Table 1. Comparison of Python performance boosters.

Tool Cython Iron Python Jython Psyco

Version 0.14 2.6.1 2.5.2RC3 1.6

CPython 2.6.1 2.6.1 2.5.2 2.5.4

What it is Programming Python Python Python

language implementation implementation library

Compiler AOT JIT JIT JIT

Technology C/C++ .NET Java Proprietary

Compatibility Almost ful l Full Full Full

Code Needed Not needed Not needed Very slight

adaptation

Required CPython, C++ .NET JVM CPython

software compiler Framework

Disk space 6.2 8.3 50.4 0.3

Tool Pypy Shedskin Unladen Swallow

Version 1.4 0.7 2009Q4

CPython 2.5.2 2.6.1 2.6.1

What it is Python Translation tool Python

implementation implementation

Compiler JIT AOT JIT

Technology Proprietary C++ LLVM

Compatibility Full Limited Full

Code adaptation Not needed May be needed Not needed

Required software - CPython C++ compiler and

tools, LLVM

Disk space 46.9 128.0 3450.5
Remark: disk space given in megabytes, calculated for 4 KB disk cluster size.

The “Version” row shows the version used in the tests (in most cases the last released

version). The “CPython” row gives the CPython (the reference Python implementation

in C) version that the booster is based on (or compatible with); the general idea was

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 12/01/2026 18:05:12

UM
CS

36 Comparative evaluation of performance-boosting tools...

to use CPython 2.6.1 as a reference, still not every booster has been released for that

version of CPython. The next row tells what the booster actually is; the “Compiler”

row shows the type of the compiler used, and the following row lists the technologies

which are behind the speed-up. Row “Compatibility” tells whether the boost can be

applied to every Python program, whereas the “Code adaptation” row indicates to what

extent a program’s source code must be modified for a booster to work. The one before

last row lists the software required to use the booster (apart from what is included with

the booster itself), and the bottom row of the table shows the disk space taken up by

the installation of a booster. Notice that it is the total disk space used (not the sum of

file sizes, as most of the boosters consist of a large number of small files, which, due to

disk space clustering, take up much more disk space than the sum of their component

file sizes), and without taking any further steps (as the installation of some of the tools

leaves a lot of files which are not required for them to run, yet they are not deleted

automatically).

3 Installation

Microsoft Windows has been assumed to be the target platform, as it was found

by this author to be the operating system family most popular among his students

currently.

Cython can be downloaded in a form of a Windows installer; after running it, the

user has just to confirm the Python version for which it is installed (as it is a Python

extension module). Iron Python can also be downloaded as a Windows installer, which

installs a Python instance; the only prerequisite is having installed .NET Framework.

Jython is a similar case, of course Java Virtual Machine is required here instead of

.NET Framework. Psyco, like Cython, is a Python module which has its own Windows

installer. Again, confirming the Python version is the only user’s input needed for

installation.

PyPy can be downloaded as a Zip archive containing Windows executables that

require no further installation. Shedskin is also distributed as a Windows installer,

containing all necessary components, including MinGW C++ compiler.

Unladen Swallow was found to be the most cumbersome to install of all the tested

software. First of all, it is only available as a source code within a Subversion repository.

As Unladen Swallow is developed for the Linux systems, the files have to be converted

to the Windows-based compiler project files using CMake utility. Unladen Swallow

requires LLVM, yet it is not included in its repository, therefore it also has to be

downloaded as source and compiled. Finally, Unladen Swallow has to be compiled to

produce a JIT-compilation-enabled Python instance. It means that, in order to use

Unladen Swallow, the end-user has to install Subversion, CMake and C++ compiler

unless he or she is a C++ developer and has these components already installed.

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 12/01/2026 18:05:12

UM
CS

Jakub Swacha 37

4 Usage

Cython is designed as a tool for library development, therefore the code to be com-

piled must be provided as a separate module. Cython source files have PYX extension,

they can be compiled into C (or, optionally, C++) code by calling the Python’s setup

function (from distutils module) with appropriate parameters; an exemplary Python

code is included with Cython distribution. The built module has a PYD extension and

can be imported from within a Python program.

Psyco is a module which has to be imported into the Python program to make the

JIT compiler available. Only functions can be compiled (not the main program code),

this little drawback can obviously be worked around by moving a complicated main

code into a separate function. There is the full function that run once compiles all

the program functions.

Shedskin provides a shell script (init.bat) that sets up the environment for its

usage. After doing it, one has to run shedskin.exe which analyzes the specified

Python program file in order to determine the used data types and then translates the

source code to C++. This process takes quite a long time – sometimes many seconds

even for simple programs. Finally, one has to run the bundled make.exe in order to

build the CPP and HPP files resulting from the previous step into an executable file

that can be run directly from the operating system environment.

The remaining solutions: Iron Python, Jython, PyPy, Unladen Swallow are all in-

stances of Python, and their usage is the same as CPython’s: one has to run the main

interpreter file, specifying the file with the source code of a program to be run as the

first parameter. The JIT compilation is turned on by default.

5 Performance test methodology

The core idea behind this research was to test the performance of Python-native

code after having applied the boost. We wanted to test classic algorithms implementa-

tions rather than industrial applications, to simulate the speed perceived by a student

implementing and testing such algorithms. Seven such programs, that were found to

work correctly with each of the tested boosters, were selected for the tests. Their list,

including name, description of the algorithm and its main parameters, as well as the

most time-intensive operations, is given in Table 2.

The LZ and Sieve programs come from the Shedskin’s set of examples [10], the

remaining ones were implemented by this author.

None of the tested programs was modified in any way to suit better any of the

boosters, apart from the modifications that were necessary for a booster to work at all.

The time was measured from inside the tested program, using the clock function,

i.e., it does not include the time spent either on interpreter startup or compilation.

The time was measured for two consecutive runs of each program, and the smaller

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 12/01/2026 18:05:12

UM
CS

38 Comparative evaluation of performance-boosting tools......

Table 2. List of programs used in performance tests.

Programl Description Main elements

BST Binary-Search-Tree insert (50000), Recursion, object handling

find (10000) and delete (5000) elements

Fibonacci Fibonacci string generator (to 33) Deep recursion

Knight Chess Knight problem (6x6 board) Recursion, handling lists of lists

LZ Lempel-Ziv’77 file compressor Bit operations, I/O operations

and decompressor (10 KB)

Queens Chess Queens problem (27x27 board) List operations, embedded loops

Sieve Sieve of Atkin (to 20000000) Handling long lists, long loops

Sort Quicksort (500000 elements) Handling long lists, recursion

measurement was registered. The test was supposed to be repeated if the difference

between the two measurements exceeded 10%, but such situation did not take place.

6 Performance test results

The tests were performed on a Intel Core2Duo 6420 2.13 GHz machine with 2 GB

of RAM under the Windows XP SP3 operating system.

The measured execution times are shown in Fig. 1.

Fig. 1. Measured execution times.

Looking at the average results, it can be clearly seen that the two solutions: Psyco

and Shedskin attained times much better than the others whereas the longest execution

times were measured for Jython and Unladen Swallow.

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 12/01/2026 18:05:12

UM
CS

Jakub Swacha 39

More detailed results are given in the tables to follow. They present the relative

speed-up (the difference between the reference execution time and the boosted execu-

tion time divided by the reference execution time) attained by the tested performance

boosting tools (see Table 3), and by different versions of CPython (see Table 4), all

compared to CPython version 2.6.1.

Table 3. Measured relative execution speed-up: Python performance boosters.

Tool Cython Iron Jython Psyco PyPy Shedskin Unladen

Python Swallow

BST 6.3% 16.2% 3.6% 91.9% 83.8% 98.6% -61.3%

Fibonacci 16.1% 45.6% -128.2% 92.3% -164.5% 96.8% -34.7%

Knight 9.0% -10.0% -239.2% 40.2% 51.8% 40.9% -13.3%

LZ 0.0% -21.7% -66.7% 25.0% 33.3% -81.7% 23.3%

Queens 15.1% -25.2% -169.1% 71.2% 27.0% 88.1% 18.3%

Sieve 22.4% -45.4% -272.0% 78.1% 35.8% 89.3% -368.9%

Sort 17.2% 26.6% -226.6% 53.9% 56.6% 84.6% -15.8%

Average 12.3% -2.0% -156.9% 64.7% 17.7% 59.5% -64.6%

Table 4. Measured relative execution speed-up: CPython versions.

CPython 2.4.4 2.5.4 2.6.1 2.7 3.0 3.1 3.2

BST -27.9% -60.4% 0.0% 0.0% 70.7% 70.7% 66.2%

Fibonacci -18.5% -12.5% 0.0% -2.0% -12.9% -19.8% -21.0%

Knight -35.5% -36.2% 0.0% -5.3% 10.6% 8.6% -20.6%

LZ -45.0% 26.7% 0.0% -1.7% -15.0% -43.3% -45.0%

Queens -15.1% -30.6% 0.0% 7.6% 3.2% 14.0% 9.0%

Sieve -11.4% -17.4% 0.0% 6.3% -81.4% -83.4% -53.0%

Sort -18.0% -21.9% 0.0% 3.9% -32.6% -29.3% -39.3%

Average -24.5% -21.8% 0.0% 1.2% -8.2% -11.8% -14.8%

The first observation is that the results presented in Table 3, with the exception of

Psyco, are noticeably different from those presented in the literature (or respective

booster documentation), especially to those given by the authors of the tested solutions.

Iron Python, instead of significant speed-up, produced a slight slow-down compared to

CPython. PyPy, instead of being faster than Psyco, was found to be slower on four of

the seven tested programs, and its performance on Fibonacci was very disappointing.

Psyco produced the most consistent results; Shedskin, although significantly faster

for most programs, stumbled on LZ. The performance of Unladen Swallow was the

most disappointing, with a performance boost measured only for two programs, and a

shocking performance degradation in the case of Sieve.

As for the performance of different CPython versions, one can notice a great improve-

ment attained with version 2.6.1. The new line of Python (versions 3.x) has noticeably

improved object handling performance (the case of BST), still the average performance

worsened.

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 12/01/2026 18:05:12

UM
CS

40 Comparative evaluation of performance-boosting...

7 Conclusions

The obtained results show that the performance boosters can help improve the ex-

ecution speed of Python programs. The boosted programs worked even 70 times as

fast (Shedskin on BST), with an average speed-up factor of about 3 (Psyco). Even

though Psyco is one of the oldest performance boosters for Python, in our tests it

achieved the results boldly superior to the solutions that were supposed to supersede

it (PyPy and Unladen Swallow), and thus remains the best solution for the assumed

purpose (speeding up classic algorithms implementations in the context of computer

science/programming education). Although Shedskin peformed better than Psyco on

all but one of the tested programs, its static translation approach with long compi-

lation time and frequent compatibility issues excludes it from practical usage for the

aforementioned purpose.

Presumably, better results could be obtained at least from Cython and Iron Python

if the source code was specially prepared for these boosters, still it was not within the

scope of this research, which aimed at examining the improvement of execution speed

of native Python code without any unnecessary modifications.

References

[1] Lutz M., Programming Python, O’Reilly, Sebastopol, CA, USA (2001).

[2] Swacha J., New concepts for teaching computer programming to future Information Technology

engineers, [in:] Perspective technologies and methods in MEMS design, Lviv Politechnic National

University, Lviv, Ukraine (2010): 188.

[3] McConnell S., Code complete: a practical handbook of software construction, Microsoft Press,

Redmond, WA, USA (1993).

[4] Python Programming Language - Official Website, http://www.python.org (Visited 2010-12-10).

[5] Cuni A., High performance implementation of Python for CLI/.NET with JIT compiler generation

for dynamic languages, Universita di Genova, Genoa, Italy (2010).

[6] Behnel S., Bradshaw R., Seljebotn D. S., Cython: C-Extensions for Python, http://cython.org

(Visited 2010-12-10).

[7] Foord M. J., Muirhead Ch., IronPython in Action, Manning Publications, Greenwich, CT, USA

(2009).

[8] Pedroni S., Rappin N., Jython Essentials, O’Reilly, Sebastopol, CA, USA (2002).

[9] Rigo A., Representation-Based Just-In-Time Specialization and the Psyco Prototype for Python,

[in:] Proceedings of the ACM SIGPLAN Workshop on Partial Evaluation and Semantics-based

Program Manipulation, ACM Press, Washington, DC, USA (2004): 15.

[10] Dufour M., Shedskin - An experimental (restricted) Python-to-C++ compiler,

http://code.google.com/p/shedskin (Visited 2010-12-10).

[11] Winter C., Yasskin J., Unladen-swallow - A faster implementation of Python,

http://code.google.com/p/unladen-swallow (Visited 2010-12-10).

[12] Lattner Ch., Adve V., LLVM: A Compilation Framework for Lifelong Program Analysis & Trans-

formation, [in:] Proceedings of the 2004 International Symposium on Code Generation and Op-

timization, IEEE CS, Palo Alto, CA, USA (2004): 75.

[13] Ewing G., Pyrex - a Language for Writing Python Extension Modules,

http://www.cosc.canterbury.ac.nz/greg.ewing/python/Pyrex (Visited 2010-12-10).

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 12/01/2026 18:05:12

UM
CS

Jakub Swacha 41

[14] Fujita S., Py2llvm translates Python syntax into LLVM IR, http://code.google.com/p/py2llvm

(Visited 2010-12-10).

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 12/01/2026 18:05:12

UM
CS

Pow
er

ed
 b

y T
CPDF (w

ww.tc
pd

f.o
rg

)

http://www.tcpdf.org

