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Abstract

In this paper we describe how to use special induced subgraphs of generalized m-gons to obtain

the LDPC error correcting codes. We compare the properties of codes related to the affine

parts of q-regular generalised 6-gons with the properties of known LDPC codes corresponding

to the graphs D(5, q).

1. Introduction

Tools of Coding theory have to be used together with cryptographic algo-

rithms. Even a unique error during the transmission of ciphertext can make

the decryption impossible. It is interesting that the same families of special

graphs can be effectively used both in Coding Theory and Cryptography.

Information is always transmitted through the communication channel, which

can be air, telephone line, beam of light or cable. It is usually very important for

the recipient to receive exactly the same message as was given. Unfortunately,

messages are usually exposed to interference, which could cause errors in the

transmission. In order to minimize the number of errors in the transmission we

can use error correcting codes.
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Whole information in the computer is represented as zero-ones sequences.

Coding of information using the linear error correcting codes means adding to

the sequences of k elements some extra bits in a certain way. These bits do not

carry information and only have checking properties. We denote [n, k] the code,

which has a length of code words n and k information bits. In that code we

have r = n− k parity checks. The ratio r/n is called code rate and is denoted

by RC . It is interesting to look for codes with the best correction properties

at the lowest code rate for economic reasons. In 1948 Claude Schannon in

his works defined the concept of capacity and proved that there exists a code

allowing the transfer of information from any small error probability if the

rate of information transmission is below the capacity. Let T be the time of

transmiting a single bit. Then the rate of information transmission is Rt =
k
nT .

Unfortunately, he did not show a way of constructing such codes. The most

known classes of error correcting codes are Turbocodes and Low Density Parity

Check Codes (LDPC codes). In this article we are only interested in the LDPC

codes.

The LDPC codes were introduced in 1963 by Robert G. Gallanger. These

codes have a high possibility of selection of parameters n and r, making it

possible to create codes with a large block size and excellent correction proper-

ties. Their advantage is the existence of efficient decoding algorithms of linear

complexity of the block length n.

There are few methods that allows to obtain the LDPC codes, but it is

possible to construct very good codes from the families of graph that already

exist or construct graphs with specific properties useful for this purpose. The

ability to use graphs to construct error correcting codes was first discussed by

Tanner [8]. This is the area where we can work because only specified graphs

are suitable for creating a good code. Usually for this purpose, simple graphs

are used, which means graphs undirected and containing no graph loops or

multiple edges. The graph must be bipartite, sparse, without small cycles and

biregular or regular with the possibility to obtain biregularity. The length of

the shortest cycle in the graph is called girth. It is interesting to look for graphs

with high girth because the codes based on them have better error correcting

properties.

Every linear error correcting code can be represented in three ways: by the

generator matrix G, parity checks matrix H or Tanner graph Γ(V,E). Parity

checks matrix for [n, k] code is r×nmatrix whose words are zeros or ones. Rows

of this matrix correspond to the parity checks and the column to the codeword

bits. If bit number j in the codeword is checked by the parity check number i

then in the position (i, j) in matrix H is one if not there is zero. Each bit is
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checked by a unique set of control equations. In the regular LDPC code every

row has the same constant weight r and every column has the same constant

weight s. Switching column does not change code properties and provides an

equivalent code. We assume that every codeword is from the set

C = {y ∈ Fn
2 | HyT = 0}.

Generator matrix G for [n, k] code is k× n zero-ones matrix whose rows create

code base. G creates a codeword y for the information vector x of the length

k: y = x · G. Each information vector corresponds to exactly one codeword.

Parity checks matrix and generator matrix are dependent. It is known that if

G = [Ik|A] is a generator matrix in the standard form for the [n, k] code C then

H = [−AT |In−k] is a parity check matrix for C.
Bipartite graph we call the graph Γ(V,E) in which a set of nodes V can be

divided into two subsets V = V1 ∪ V2 in such a way that no two vertices from

each set Vi, i = 1, 2 are connected by edge.

Tanner graph we call the bipartite graph in which one subset V1 corresponds

to the codeword bits and second V2 to the parity checks. Vertex from the set

V1 is connected to a vertex from the set V2 if and only if a bit corresponding to

the vertex from V1 is controlled by the parity check corresponding to the vertex

from V2.

The code which has a representation as a sparse matrix or a sparse Tanner

graph we call the LDPC code. The matrix is called a sparse if their ratio of

ones to the number of zeros in each row and column is small compared to the

length of the rows and columns. The very primary example of LDPC code is

[7, 4] the Hamming code with RC = 3
7 . Sparse graph has a small number of

edges in relation to the number of vertices. The simple relationship describing

the density of the graph Γ(V,E) is

g =
2|E|

|V |(|V | − 1)
,

where |E| is the number of edges of graph Γ and |V | is the number of vertices.

In this paper we show that the graph corresponding to the affine part of the

generalized m-gons can be used to obtain a very good class of LDPC codes.

We discuss how to use them and compare our results with those used by the

NSA codes obtained by Guinand and Lodge [2] who used as a base for codes the

graphs with suitable properties D(k, q) constructed by Ustimenko and Lezebnik

( see [4,5,6]).
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2. Description of AH(q, q)

Missing definitions of theory of simple graphs can be found by the reader in

[13].

The distance between the vertices v1 and v2 of the graph is the length of

minimal pass from v1 and v2. The graph is connected if for an arbitrary pair

of vertices v1, v2 there is a pass from v1 to v2. The diameter of a connected

simple graph is the maximum of the distances between vertices in the graph.

We refer to the bipartite graph Γ(V1∪V2, E) as a biregular one if the number

of neighbours for representatives of each partition set are constants r + 1 and

s+ 1 (bidegrees). We call the graph regular in the case r = s.

Generalized m-gons are connected, biregular, bipartite graphs with girth 2m,

diameter m and bidegress (r+1, s+1). Traditionally, in the case of generalised

m-gon Γ(V1 ∪V2, E) one partition set V1 = P is called the set of points and the

other V2 = L is called the set of lines. Vertices corresponding to point can be

connected by edges only with a vertex from L and the vertex corresponding to

the line can be connected only with the vertex from the set P .

When two vertices point (p) and line [l] are connected by the edge we call this

incidence pair (p, l) flag. We define the distance from flag (p, l) to the vertex

v ∈ V as the sum of distances from p to v and l to v.

Affine generalized m-gon can be obtained in the following way. Let us choose

a flag (p, l) in the generazilzed m-gon and remove all points and lines except

these which are in the maximal distance from the flag. By this method we obtain

a biregular graph with the bidegrees r and s. It is clear that affine generalized

m-gons have a girth ≥ 2m. If the generalised m-gon is edge transitive then

the structure/construction of affine generalised m-gon does not depend on the

choice of the flag. In the case m = 6 there is only one known family of regular

generalised m-gons with the bidegrees r + 1 = s + 1, where r = q = pm, p is

prime, m ≥ 1. Each representative of this family is an edge transitive graph.

When m = 6 we denote generalized m-gon as GH(q, q) and affine generalized

m-gon as AH(q, q), where q is a prime power. For more details about this

structure we refer to [1]. Note that q + 1-regular graph GH(q, q) has 1 + q +

q2 + q3 + q4 + q5 points and the same number of lines. The order of q-regular

AH(q, q) is 2q5. The following interpretation of AH(q, q) can be used for p ≥ 5.

Let Fq be the finite field containing q elements. Each point can be identified

with (p) = (x, y, z, u, w) ∈ and each line with [l] = [a, b, c, d, f ]. Brackets and

parentheses allow us to distinguish points and lines. We say point (p) is incident

to line [l], and we write (p)I[l] if the following relations on their coordinates
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hold: 
y − b = xa

2c− z = 2xb

u− 3d = −3xc

2w − 3f = 3zb− 3yc+ ua

(1)

where all coordinates are elements of Fq. AH(q, q) is regular but has a structure

that allows us to remove points and lines in such a way that we can obtain an

arbitrary bidegree. We can do it exactly the same as it was done with D(k, q)

in [6]. Let L be a set of all lines and P a set of all points. To obtain the

desired bidegree (r, s) we must put restriction on coordinates. Let R ⊂ Fq and

S ⊂ Fq be an r-element and s-element subsets respectively and let VP and VL

be sets of points and lines in a new bipartite graph. They are the following sets:

VP = {(p) ∈ P |x ∈ R}
VL = {[l] ∈ L|a ∈ S}.

If the set of points is bigger than the set of lines, then points correspond to code-

word bits and lines correspond to parity checks. Otherwise, lines correspond to

codeword bits and points correspond to parity checks.

3. Code construction

To create the LDPC code of dimension d containing (n, k) the Hamming code

as component codes we must use AH(q, q), where q is the first prime which is

greater than n. Then we reduce the bidegree to (d, n). Bidegree reduction can

only increase the girth. After reduction the bidegree graph can be disconnected.

When we put restriction on the coordinates x of point, the graph will be divided

into several components. But when we put restriction on the first coordinate

a of lines the graph remains connected. This is due to a lack of symmetry

AH(q, q). Next we take one component containing a chosen vertex (point or

line) and find all other vertices for which there is a path to the chosen vertex.

We use this component to create a parity checks matrix. If |VP | > |VL| then
points correspond to code words, bits and lines to parity checks, if not then

lines correspond to code words bits and points to parity checks. We decide

to put one or zero in parity check matrix by checking if relations (1) on their

coordinates hold. Every bit from the codeword is checked by d parity checks.

In the case of graphs D(k, q), the resulting graphs are always disconnected. It

is interesting that the properties of codes obtained from D(5, q) and AH(q, q)

through the restriction on points coordinates are similar as can be seen in Figs

1 and 2. Table 1 contains the data about the resulting graphs.
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The Graphs D(5, 7) and AH(7, 7) with x ∈ R after the reduction bidegree

to (2, 7) split into 49 components and D(4, 7) splits into 7 ones. They all give

equivalent codes and it doesn’t make any difference which component we choose.

The graphs AH(17, 17) with restriction on the points coordinate x ∈ R, |R| = 2

and D(5, 17) after reduction bidegree to (2, 15) split into 289 components. The

larger field we use the better code rate we obtain, for example taking F7 for the

codes based on these graphs, the code rate is RC ≈ 0.286 but taking F17 we

have RC = 0.1(3).

4. Results

Transmission quality depends mainly on code, decoding algorithm and the

level of noise in a communication channel. Code error correcting properties are

tested by determining the relationship between the noise level and the bit error

rate. The bit error rate (BER) is the ratio of the number of bit errors to the

total number of transferred bits. Simulation usually carried out for Gaussian

Channel where noise is modelled by Gaussian White Noise so our simulations

Table 1. Graphs property after receiving bidegrees (2, 7) and (2, 15)

respectively.

Initial Girth Restriction Number Number Code

graph on of lines of points rate

coordinates in fixed in fixed

component component

AH(17, 17) 12 a ∈ S, |S| = 2 167042 1252815 0.1(3)

x ∈ R, |R| = 15

AH(17, 17) 12 x ∈ R, |R| = 2 4335 578 0.1(3)

a ∈ S, |S| = 15

D(5, 17) 10 x ∈ R, |R| = 2 4335 578 0.1(3)

a ∈ S, |S| = 15

D(5, 17) 10 a ∈ S, |S| = 2 578 4335 0.1(3)

x ∈ R, |R| = 15

AH(7, 7) 12 a ∈ S, |S| = 2 4802 16807 ≈ 0.286

AH(7, 7) 12 x ∈ R, |R| = 2 343 98 ≈ 0.286

D(5, 7) 10 x ∈ R, |R| = 2 343 98 ≈ 0.286

D(5, 7) 10 a ∈ S, |S| = 2 98 343 ≈ 0.286

D(4, 7) 8 x ∈ R, |R| = 2 98 343 ≈ 0.286

D(4, 7) 8 a ∈ S, |S| = 2 343 98 ≈ 0.286
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On LDPC codes corresponding to . . . 149

were done using the BPSK modulation over the AWGN channel and simple

MAP decoder implementation.

Fig. 1. Bit error rate for [343, 98] code (circle) based on AH(7, 7) and [343, 98] code

(square) based on D(5, 7), both with x ∈ {0, 1}.

In D(k, q) there is no difference if we put restriction on points or lines. When

we take lines from a smaller partition set in a reduced AH(q, q), we obtain a

better code but with exactly the same code rate RC ≈ 0.286 as if we take points

from R, |R| = 2. Fig. 3 shows the results.

Fig. 2. Bit error rate for [4335, 578] code (circle) based on AH(17, 17) and [4335, 578]

code (square) based on D(5, 17), both with x ∈ {0, 1} and a ∈ {0, 14}.
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Fig. 3. Bit error rate for [16807, 4802] code (square) with a ∈ {0, 1} and chosen vertex

[l] = [0, 0, 0, 0, 0] and [343, 98] code (circle) with x ∈ {0, 1} and chosen vertex

(p) = (0, 0, 0, 0, 0), both based on AH(7, 7).

5. Remarks

In [2] as coordinates the authors used elements from Fq where q is the first

prime greater than n. We take q which is the first prime power greater than n.

Fig. 4 shows that for the code based on D(3, 16) we obtain as good results as

for D(3, 17). D(3, 16) gives [256, 32] code with a slightly better code rate than

code [255, 34] arising from D(3, 17).

Fig.4 . Bit error rate for [256, 32] code (square) based on D(3, 16) and [255, 34] code

(circle) based on D(3, 17).
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Obviously in each code we can reduce the bidegree of graphs to (3, 7) or

(3, 15) depending on a field and a graph. But then the code rate increases.

It is also possible to construct the LDPC codes based on the graphs AO(q, q2),

q = 22k+1 arising from generalized 8-gons whose girth is 16, so it seems that

this kind of codes has better error correcting properties. The graph AO(q, q2)

has the bidegree (q, q2). It also has structure which allows easily to remove

points and lines to obtain arbitrary bidegree exactly in the same way as it was

done with D(k, q) and AH(q, q).
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