
Annales UMCS Informatica AI XI, 3 (2011) 27–40

DOI: 10.2478/v10065-011-0002-y

Effective reduction of cryptographic protocols

specification for model-checking with Spin

Urszula Krawczyk1∗, Piotr Sapiecha1,2

1 Krypton-Polska, Al. Jerozolimskie 131 Warsaw, Poland
2 Department of Electronics and Information Technology,

Warsaw University of Technology, Warsaw, Poland

Abstract

In this article a practical application of the Spin model checker for verifying cryptographic

protocols was shown. An efficient framework for specifying a minimized protocol model while

retaining its functionality was described. Requirements for such a model were discussed, such

as powerful adversary, multiple protocol runs and a way of specifying validated properties as

formulas in temporal logic.

1. Introduction

A flaw in a cryptographic protocol may become a real security thread [1,

2]. Even a seemingly small protocol may produce a great number of possible

behaviours. One of the methods to formallycon sider protocols correctness is

model checking by representing the protocol as Büchi automata M , specifying

every checked property as an LTL temporal formula α and checking satisfiability

of the formula in the model M |= α [3, 4, 5, 6].

The automata of the protocol is typically generated from a more high-level

description. This article has its focus on representing protocol models in the

∗E-mail address: U.Krawczyk@krypton-polska.com

Unauthenticated
Download Date | 9/25/15 2:52 PM

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 12/05/2025 02:00:46

UM
CS

28 Urszula Krawczyk, Piotr Sapiecha

Promela language, which is an input for model checker Spin [7]. Choice of

that tool was due to its effective, automatic minimizing techniques and its

widespread use in the area of verification (see annual workshops page [8]).

Some examples of verifying cryptographic protocols with Spin can be found

in the literature [9, 10, 11, 12, 13, 14, 15]. However, the presented models

are too simple, not taking into consideration multiple runs or limiting the pro-

tocol attacker abilities. Most importantly they create a large automaton, even

though not so complicated Needham–Schroeder protocol is considered. Such

an approach for modelling a more complex protocol like JFK would result in

a model not feasible to verify. Model publicized in [10] seems to be the most

sophisticated, as it is scalable and includes parallel runs but it contains many re-

dundant transition causing state–space explosion. Another approach presented

in [15] uses interesting recursive structures but at the expense of great memory

cost. This does not disable the possibility of finding the attacks but only full

coverage of reachable states can assure the model behaviour correctness.

Also none of the mentioned models supports creating a readable counterex-

ample indicating an attack. In this article a method for developing crypto-

graphic protocol models, avoiding those drawbacks is outlined. The description

of protocol framework is illustrated with the fragments of Promela code.

2. Problem Definition

Key establishment and authentification cryptographic protocols, such as

Needham–Schroeder or JFK, can be modelled as automata so that their prop-

erties, described as temporal formulas, can be checked. The main problem is

to keep such a model effectively verifiable. The satisfiability of the formulas in

the model should increase confidence in the security of the protocols. Thus it

is crucial to explicitly list requirements such a model must comply with. The

environment in which the protocol is studied is considered an important matter

[16, 17, 18]. The main points are the following:

: Legal users - can participate in parallel protocols taking different roles

(initiator, responder). They can establish a session with other users

including the intruder, that has a certificate like other legitimate users.

: The intruder - can at any point eavesdrop a message, alter it and

resend it to another user in another protocol run. The adversary pro-

duces messages on the basis of his actual knowledge, creating new com-

plex elements (e.g. encryptions) or resending the remembered ones.

: Model scalability - concerns the number of protocol runs and the

attackers knowledge database.

Unauthenticated
Download Date | 9/25/15 2:52 PM

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 12/05/2025 02:00:46

UM
CS

Effective reduction of cryptographic protocols . . . 29

: Additional data - the information required for logical assertions that

are written to check protocol properties must be stored. Also addi-

tional informations about protocol state are printed out and used later

while producing a counterexample.

: Model configuration - description of a particular model configura-

tion, should specify any constraints in the way that the messages are

sent from the user to the user and the roles the users can take.

These specifications are responsible for models proper behaviour. While the

above constraints hold, one important parameter must be minimized:

: Models size - affects the amount of memory and time needed for verifi-

cation. Considering the exponential complexity of the model checking

problem (O(#(M)) = O(2#(P)), where P is the number of atomic

prepositions describing the states of model M [19]), this seems to be

a critical issue in practical applications.

3. Representing Protocol as an Automaton

To illustrate the idea of modelling protocols as Büchi automata, an exam-

ple is given in this section, showing a path from a protocol description up to

the automaton. A clear, simple protocol is used (Fig. 1). Also no reduction

techniques have been demonstrated yet. This keeps the model comprehensible

so that the reader can understand the general methodology. The verification

process consists of the following steps.

(1) Modelling protocol - the verifier describes in the Promela language

the behaviours of the protocol users and all the possible actions the

adversary can take. A sample code representing the responder in the

example protocol is shown in Fig. 1.

(2) Protocol as automaton - the Promela code describes an automaton.

A gard and an action are associated with every transition from state

to state. In the automaton in Table 1 and Fig. 2, the state when

the key is established can be reached only if the guard corresponding

to signature correctness holds. The actions can change the variables

values and message channels contents.

(3) Kripke structure - incorporating variables values into automaton

produces a Kripke structure [4, 6]. Here every state represents a pos-

sible configuration of variables values. The example structure is shown

in Fig. 3.

(4) Büchi automaton - nondeterminism of Büchi automaton is crucial

for model checking, as every possible path in the protocol must be

analyzed. Büchi automaton can be constructed from Kripke structure

Unauthenticated
Download Date | 9/25/15 2:52 PM

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 12/05/2025 02:00:46

UM
CS

30 Urszula Krawczyk, Piotr Sapiecha

by copying the state labels onto the outgoing arcs [6], which can be

seen in Fig. 4.

(5) The verified property - all the desirable properties of the protocol

are written down as LTL logic formulas. The formulas contain refer-

ences to variables from the protocol model. Each formula is negated

to denote the unsafe states and automatically transformed into spe-

cial never process in the Promela code with Spin or another tool [20],

as shown in Fig. 5. This code can be also transformed into the Büchi

automaton. Locations represented as double framed circles are accept-

ing locations. The automaton accepts an infinite input if it makes the

automaton visits accepting states infinitely often [5, 6].

(6) Verification algorithm - at the end an asynchronous product of all

automata representing protocol users is constructed. This automaton

is used to construct a synchronous product with the formula automa-

ton [6]. The algorithm is to search the resulting automaton for a path

that would traverse infinitely often through the formula automaton

accepting locations [4, 6].

(7) Counterexample - such a path indicates an error in the protocol

and presents a way an unsafe state can be reached. On the whole, the

protocol is flawed if its model can produce a path, that is accepted by

the automaton representing an undesirable situation.

The human verifier takes part only in the stages involving modelling the

protocol in the Promela language and writing LTL logic formulas. Other ac-

tivities are done automatically by the model checker tool. Actually effective

implementations merge the described stages to reduce computing costs.

Table 1. Table with automaton describing responders states while par-

ticipating in the protocol from Fig. 1.

Transition Current state Gard Transition effect Next state

t43 0 - - 1

t44 1 - m1?certi,expi 2

t45 2 - printf(’MSC: MSG2 Bob. . . ’) 3

t46 3 - m2!B, ExpB, BPr, expi, ExpB 4

t47 4 - m3?sigkey,sigexpi,sigexpr 7

t48 7 (((certi == A . . .) - 6

t49 7 (((certi != A . . .) - 13

t1 6 - skip; 11

t50 11 - d step{. . . } 12

t51 12 - - 13

Unauthenticated
Download Date | 9/25/15 2:52 PM

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 12/05/2025 02:00:46

UM
CS

Effective reduction of cryptographic protocols . . . 31

Modelling protocol

MSG1 A → B : A, ka
MSG2 B → A : B, kb, SIG{BPr}(ka, kb)
MSG3 A → B : SIG{APr}(ka, kb)

ka = ga mod p

kb = gb mod p

Key = kba mod p = kab mod p

Fig. 1. Description of examplary key establishment cryptographic pro-

tocol based on the Diffie–Hellman schema and signature and the

Promela code representing the responder.

4. Our approach

The most intuitive way to model protocol is to represent users as indepen-

dent processes, sending messages through channels controlled by the intruder.

Unauthenticated
Download Date | 9/25/15 2:52 PM

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 12/05/2025 02:00:46

UM
CS

32 Urszula Krawczyk, Piotr Sapiecha

Protocol as automaton

Fig. 2. Graphical representation of automaton from Table 1, describing responders’

behaviour.

Kripke structure

Fig. 3. Kripke structure constructed from automaton from Fig. 2.

Büchi automaton

Fig. 4. Büchi automaton constructed from the Kripke structure from Fig. 3.

Unfortunately, such a model, though properly describing the protocol, might be

too large to analyze. Due to exponential complexity of the problem [19], every

redundancy in the model is expensive by means of memory and computation

time.

So the ability to model a protocol is not sufficient for practical verification.

Thus the constructions below were used in the presented model to reduce its

complexity, while giving the intruder strong abilities.

Unauthenticated
Download Date | 9/25/15 2:52 PM

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 12/05/2025 02:00:46

UM
CS

Effective reduction of cryptographic protocols . . . 33

The verified property

Fig. 5. Büchi automaton constructed from the LTL logic formula ♦ id misb (identity

misbinding attack is possible). Specification in the Promela code (left) and graph

representation (right).

4.1. Remembering Simple Message Elements

Simple elements known by the intruder are remembered as bytes in the EveDB

array. Every element has unique value and can be accessed with a combination

of defined indices. The values for the JFKi protocol are shown in the left

column of Fig. 6. The example of access to elements can be found in the

right column of Fig. 6. For instance the index of responders nonce nonr, is

a sum of index indicating user identifier, nonce type and current protocol run

(otherUser +NONCE + comm). On the other hand, exponentials are reused

between protocol runs so to access them the comm variable indicating the run

is not used. If the EveDB array cell is not empty, the value is known by the

attacker.

4.2. Remembering Complex Message Elements

Complex elements such as signatures and encryptions are stored by the in-

truder in additional channels which work like FIFO queues. While generating

a faked message, needed elements are randomly chosen from channels. The ex-

amplary usage was shown in Fig. 6 (right). Channel EveSig2 holds signs from

the second protocol message, that were intercepted earlier.

4.3. Eavesdrop On Send, Corrupt on Receive Tactic

In a simple model the message is produced by the legal user, the intruder

learns it and then the message is sent. Yet before the receiver gets it, the data

is intercepted and generated once more by the attacker on the basis of their

knowledge. An observation can be made, that it makes no sense to transport

via the channels the data that is already stored in the intruder database. It

can be seen that the original message is not used after the intruder learns it.

Unauthenticated
Download Date | 9/25/15 2:52 PM

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 12/05/2025 02:00:46

UM
CS

34 Urszula Krawczyk, Piotr Sapiecha

Fig. 6. Representation of simple message elements (left) and intruder preparing faked

MSG2 in JFKi (right) in Promela language code.

Therefore in our approach channels transport only information that a message

is sent as shown in Fig. 7. In consequence, all channels memory usage size is

constant and small. Thus the tactic is crucial for minimizing the model size.

It is also important that in our model the intruder can produce faked mes-

sage after arbitrary time, possibly after receiving other messages from parallel

protocol runs and learning new data. This models the ability of the intruder

to delay messages. In Fig. 7, a circle is a point where a message is consumed

by the attacker, while a square marks creation of a message by him. As can

be seen message M1’ is produced after learning message M2 from the second

protocol run. Sending of message is also the point where the intruder decides

where the message will be sent.

Unauthenticated
Download Date | 9/25/15 2:52 PM

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 12/05/2025 02:00:46

UM
CS

Effective reduction of cryptographic protocols . . . 35

Fig. 7. Eavesdrop on send, corrupt on receive schema and specification in the

Promela language.

The effect is achieved by combining attackers’ activities with the users’ steps,

rather than putting them into a separate process. As the method name suggests

the intruder takes his first action (eavesdropping) just after the legal user sends

a message. The instructions are put into the sender process. The attackers’

second action (corrupting the message) is put into receivers’ process, just before

the legal user gets a message.

The tactic also eliminates introduction of additional mechanism to prevent

the intruder from intercepting his own, faked messages. This could have been an

additional field in a message, indicating if the message was sent by the attacker

that can be found in the literature [10]. With the tactic this is not needed, as

the data is generated only once before the legal user receives it.

4.4. Only One Channel For a Message

Using for every message two channels (first for transporting data from the

legal user to the intruder, second for transporting data to the legal receiver) is

simple and intuitive but memory expensive. Thus only one channel is used in

our model. This can be done as no message data is really transported as was

mentioned. Only information that a message is sent is placed in channels.

4.5. All Users in One Process

The eavesdrop on send, corrupt on receive technique also makes it possible to

place the code of all users in one process. As it was mentioned, the intruders’

actions are combined with those of legal users. In a simple model senders and

receivers could be put in independent processes. Every step of a user consists

Unauthenticated
Download Date | 9/25/15 2:52 PM

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 12/05/2025 02:00:46

UM
CS

36 Urszula Krawczyk, Piotr Sapiecha

of receiving and/or sending a message. Such step would be put into an atomic

clause to minimize interleavings we are not interested in. This would result

in a sequence of users’ atomic steps from different protocol runs, which is the

models proper behaviour.

Yet the presence of many processes would cause the model checker to create

an asynchronous product of the automata. This would introduce redundant

interleaving and make the verified model grow too much [3]. That is why only

one process is used with a do loop, in which from the set of executable steps one

is nondeterministically chosen. Every step is represented by a function to keep

both the advantage of one process and of having structured the Promela code,

as shown in Fig. 7. Rather than storing the user identity in his process state,

it becomes the function parameter. For example, a receiver of the message is

indicated by the self parameter of function recvMSG1sendMSG2().

In such a model a sequence of nondeterministically chosen steps is produced

just as in the multi-process case but without the undesirable overhead. So this

approach does not affect the models functionality but its efficiency.

4.6. Consistent Message Generation by the Intruder

The consistent generation of messages means that once chosen, an element

(e.g. nonce, exponential) is used by the intruder in the whole message. This

helps avoid messages that are known to be rejected by legal users. The example

of this was shown in Fig. 6 (right). Here the same value is used as exponential

of a responder expr in the plain text and in the faked signature.

5. Protocol Properties Verification

The last step is specifying protocol properties as LTL (linear temporal logic)

formulas. Notation �α means that α is satisfiable in the model, iff it is true

for every execution path of the automata. It can be used to specify that it is

desirable that unsafe states are never reachable. For the Needham–Schroeder

protocol, an example safety formula detecting identity misbiding would be:

α =
(
run2accepted &&

(otherUsrA[COMM1] == IDB&& otherUsrB[COMM1] == IDE

‖ otherUsrA[COMM1] == IDE&& otherUsrB[COMM1] == IDA)
)

The wrong state is when one of the legitimate users accepts a session with

another legal user (IDA or IDB), while this user did not, because he was

engaged in a run with the intruder (IDE). So it should hold that M |= �¬α.
Fig. 8 presents a readable counterexample for the attack. It was automatically

produced by a simple driver written by the authors, that runs the model checker,

parses Spins output and interprets it. Only the emphasis was added by hand

Unauthenticated
Download Date | 9/25/15 2:52 PM

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 12/05/2025 02:00:46

UM
CS

Effective reduction of cryptographic protocols . . . 37

for more readability. The required information, from the raw output of the

model checker, originates from the printing commands shown in Figs 1 and 6.

Form the listing it can be seen that Bob accepted a session with Alice who

never took part in a run with Bob.

2 m1!0,1

MSC: MSG1.1 1 -\9 Enc{9}(4, 1)
2 m1?1,5

MSC: MSG1 Eve(1) ->5 Enc{5}(4, 1)
MSC: MSG2.1 5 ->1 Enc{1}(4, 8)

4 EveEnc2!1,4,8

3 m2!1,1

3 m2?0,1

5 m3!0,1

3 m2?1,1

4 EveEnc2?1,4,8

4 EveEnc2!1,4,8

MSC: Eve resending Enc{1}(4, 8)
MSC: MSG2 Eve(9) ->1 Enc{1}(4, 8)
MSC: INITIATOR 1 accepted run \1 with 9

MSC: MSG3.1 1 ->9 Enc{9}(8)
5 m3?1,5

MSC: MSG3 Eve(1) ->5 Enc{5}(8)
MSC: RESPONER 5 accepted run\1 with 1

MSG1.1 IDA -> IDE Enc{IDE}(NA2, IDA)

MSG1 Eve(IDA) -> IDB Enc{IDB}(NA2, IDA)

MSG2.1 IDB -> IDA Enc{IDA}(NA2, NB2)

Eve resending Enc{IDA}(NA2, NB2)

MSG2 Eve(IDE) -> IDA Enc{IDA}(NA2, NB2)

INITIATOR IDA accepted run1 with IDE

MSG3.1 IDA -> IDE Enc{IDE}(NB2)

MSG3 Eve(IDA) -> IDB Enc{IDB}(NB2)

RESPONER IDB accepted run1 with IDA

Fig. 8. A description of an identity misbinding attack in the Needham–Schroeder

protocol detected with Spin. Model checker raw output (left) and a readable output

generated by our driver (right).

Another issue about writing formulas is the labels mechanism. It should be

used if possible because it avoids additional, global variables to mark a state.

Labels in Promela are inserted into code just as in C language. Expression of

the form (ProcessName@LabelName) used in a formula, will discover a point

where the process is in the labelled state.

As for the JFKi protocol the following two examplary formulas are presented.

γ =(JFKiProtocol@INTRUDER DECRY PTED MSG3 LABEL

&& cert ! = IDE)

ψ =(JFKiProtocol@ACCEPTED INIT SA LABEL && cert ! = IDE

&& secAssos == SaiE)

The first formula is used to detect privacy violation attack, when Eve decrypts

the third message that was not supposed for her (global variable cert stores

certificate of the peer chosen by the initiator and it is not IDE).

Unauthenticated
Download Date | 9/25/15 2:52 PM

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 12/05/2025 02:00:46

UM
CS

38 Urszula Krawczyk, Piotr Sapiecha

The second formula is true if the responder accepts a wrong initiators security

association. That is when the association was inserted by the intruder (SaiE),

although it should originate from a legal initiator (whose identity is kept in

cert). There should never happen a situation when these formulas are true, so

the Büchi automata are built for the formulas �¬ γ and �¬ψ. With analogical

formulas, the ability of the adversary to change the exponentials, nonce and

Diffie–Hellman group information can be checked. During the verification of

JFKi protocol with Spin, none of the attacks was detected.

6. Application of the Method and Computational Results

The following model instance configuration was used for the verification re-

sults below: two parallel runs, two legal protocol users, intruder knowledge

database containing two elements (Needham–Schroeder) or one element (JFKi)

of every type of the complex element. In the second case, to give the adversary

more abilities, any received complex element is stored in the databases nonde-

terministically. So the first element may not fill the queue completely. This

configuration makes it feasible to verify a protocol on an average computer

(AMD Athlon 2.01GHz, 2GB RAM) and lets expect the standard attacks to be

detected.

Costs of example protocols verification are shown in Table 2. Our models

are indicated bold. Sources of model from [10] are available, so scaled down

to two parallel runs, they were included as a comparison. Also publicized

fragments of [15] model give a hint of its size. At the first sight it is visible

that the unminimized models present much bigger state vectors. In the case

of JFKi, it can be very distinctly seen how beneficial for verification were the

reductions of the model. The original automaton was much too complex and

was only partially analyzed. The minimized model could be verified in less than

a quarter of hour. Protocol security properties did hold in the JFKi model.

Table 2. Costs of example protocols verification.

Protocol Time Reached states State vector Used memory Verification type

Needham–Schroeder [10] 2770s 3.10e+007 224b 1128.758MB partial

Needham–Schroeder [15] – – 528b – code fragments

Needham–Schroeder 12.7s 3.06e+006 92b 98.094MB full

JFKi non reduced 172s 4.00e+006 1916b 1851.350MB partial

JFKi reduced 650s 3.62e+007 204b 1051.023MB full

7. Conclusions and Future Plans

The proposed modelling framework has proved to be computationally effi-

cient, enabling verification of more complex protocols. Although the approach

Unauthenticated
Download Date | 9/25/15 2:52 PM

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 12/05/2025 02:00:46

UM
CS

Effective reduction of cryptographic protocols . . . 39

is more work consuming than using tools specialized only in verification of cryp-

tographic protocols such as Casper [21, 2], yet it gives more control over the

model configuration. Another fact is that the discussed method is far more

readable than for example CSP [2] or clauses for the ProVerif program [22].

Hence it is more accessible for the inspection and less error prone. In addition,

automatic generation of counterexamples is a true asset of the method.

The presented framework is a proposal of a method complementary to the ex-

isting ones, being aimed at solving the difficult problem of assuring correctness

of safety protocols.

As for the future improvements, designing a methodology to divide the model

would make it possible to verify more parallel runs of a protocol. For example,

in each part the initiator would choose a different responder. Analysis of each

such model would require less memory and could be possibly done concurrently

on separate computers, saving the time.

A more complex task would be to create a parser that would transform a pro-

tocol specification, in a protocol description language such as CAPSL [23], into

a model. The Promela code could be still edited by the human verifier if needed

but the main work would be done automatically. This offers another oppor-

tunity, that from the same input many outputs can be generated, including

several verification models or a protocol implementation [23, 17].

References

[1] Uk chip and pin credit / debit cards are insecure (2009)

http://www.youtube.com/watch?v=JPAX321gkrw

[2] Schneider S., Ryan P., Modelling and analisis of security protocols, Addison–Wesley

(2001).

[3] Holzmann G. J., Hu C., Logic Model Checking - lectures, (2008)

http://spinroot.com/spin/Doc/course/

[4] Merz S., Model Checking: A Tutorial Overview, Technical report München University

(2000)

[5] Mukund M., Linear-time temporal logic and Büchi automata, SPIC Mathematical Insti-

tute, Madras, India (1997)

[6] Tauriainen H., Automated testing of Büchi automata translators for linear temporal logic,

Helsinki University of Technology (2000)

[7] Spin model checker: http://www.spinroot.com

[8] Spin Workshop: http://spinroot.com/spin/Workshops/index.html

[9] BEEM: BEnchmarks for Explicit Model checkers: Needham-Schroeder protocol model

http://anna.fi.muni.cz/models/cgi/model info.cgi?name=needham

[10] Khan A. S., Mukund M., Suresh S. P., Generic verification of security protocols, Springer

Berlin / Heidelberg (2005)

[11] Sapiecha P., Krawczyk U., Validation of cryptographic protocols using model checker

spin, CECC (2010).

Unauthenticated
Download Date | 9/25/15 2:52 PM

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 12/05/2025 02:00:46

UM
CS

40 Urszula Krawczyk, Piotr Sapiecha

[12] Lafuente A. L., Promela database: X.509 protocol model

http://www.albertolluch.com/research/promelamodels

[13] Maggi P., Sisto R., Using SPIN to to verify security properties of cryptographic protocols,

In LNCS Springer-Verlag (2002): 187.

[14] Merz S., Needham–schroeder protocol model

http://www.loria.fr/ merz/papers/NeedhamSchroeder.spin

[15] Yongjian L., Rui X.,Design of a CIL Connector to Spin (2008)

[16] Compagna L., Armando A., Carbone R., LTL model checking for security protocols 23

(2009).

[17] Gordon A. D., Progress on provable implementations of security protocols, Technical

Report, Microsoft Research (2009).

[18] Stamer H., Verification of cryptographic protocols, Technical Report, University of Kassel

(2005).

[19] Schnoebelen Ph., The complexity of temporal logic model checking, Advances in Modal

Logic (2003).

[20] Rozier K. Y., Vardi M. Y., LTL satisfiability checking (2008).

[21] Casper: A compiler for the analysis of security protocols

http://web.comlab.ox.ac.uk/people/Gavin.Lowe/Security/Casper/

[22] ProVerif: Cryptographic protocol verifier in the formal model

http://www.proverif.ens.fr/

[23] Denker G., Millen J., CAPSL and CIL Language design, Technical Report, Computer

Sciene Laboratory (1999).

Unauthenticated
Download Date | 9/25/15 2:52 PM

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 12/05/2025 02:00:46

UM
CS

Pow
er

ed
 b

y T
CPDF (w

ww.tc
pd

f.o
rg

)

http://www.tcpdf.org

