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Fast multidimensional Bernstein-Lagrange algorithms
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Abstract – In this paper we present two fast algorithms for the Bézier curves and surfaces of an

arbitrary dimension. The first algorithm evaluates the Bernstein-Bézier curves and surfaces at a set

of specific points by using the fast Bernstein-Lagrange transformation. The second algorithm is an

inversion of the first one. Both algorithms reduce the initial problem to computation of some discrete

Fourier transformations in the case of geometrical subdivisions of the d-dimensional cube. Their orders

of computational complexity are proportional to those of corresponding d-dimensional FFT-algorithm,

i.e. to O (N logN) +O (dN), where N denotes the order of the Bernstein-Bézier curves.

1 Introduction

Let n = (n1, n2, . . . , nd) be a d-tuple of positive integers and K be a field. Moreover,

let Qn be a lattice of all N = n1n2 . . . nd multi-indices α = (α1, α2, . . . , αd) with the

integer coordinates satisfying inequalities

0 ≤ αi < ni for i = 1, 2, . . . , d. (1)

Using the multi-index notation, we write Bernstein-Bézier vector polynomials of the

variable x = (x1, x2, . . . , xd) ∈ Kd in the form

pn (x) =
∑

α∈Qn

fαBα (x) , (2)
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8 Fast multidimensional Bernstein-Lagrange algorithms

where fα ∈ Ks are the control points, the summation extends over all n1n2 · · ·nd

multi-indices α from the lattice Qn, and

Bα (x) =

(
n− 1

α

)
xα (1− x)

n−α−1
=

d∏

j=1

(
nj − 1

αj

)
x
αj

j (1− xj)
nj−1−αj , (3)

where n−1 = (n1 − 1, n2 − 1, . . . , nd − 1). Note that pn(x) is a Bézier curve or surface

in the case when d = 1 or d = 2, respectively.

Additionally, suppose that

xα = (x1,α1
, x2,α2

, . . . , xd,αd
) , α = (α1, α2, . . . , αd) ∈ Qn, (4)

are the points in Kd such that coordinates

xi,0, xi,1, . . . , xi,ni−1 (i = 1, 2, . . . , d) (5)

are pairwise distinct, i.e. xi,j �= xi,k, whenever j �= k. Then the Bernstein-Bézier

vector polynomial pn (x) can be written in the Lagrange form

pn (x) =
∑

α∈Qn

yαLα (x) , (6)

where yα = pn (xα) ∈ Ks and

Lα (x) =

d∏

i=1

Lαi
(xi) , Lαi

(xi) =

ni−1∏

j=0
j �=αi

xi − xi,j

xi,αi
− xi,j

. (7)

In this paper we present two fast algorithms of the order

O(N logN) +O(dN), N = |Qn| = n1n2 . . . nd, (8)

for the Bernstein-Lagrange transformation T : (fβ)β∈Qn
→ (yβ)β∈Qn

, and its inverse,

which is defined by

T : yβ =
∑

α∈Qn

fαBα(xβ), β ∈ Qn, (9)

where the coordinates of points xβ are such that

xi,j = λiγ
j
i (i = 1, 2, . . . , d, j = 0, 1, . . . , ni − 1) (10)

with the scalars λi �= 0, γi �= 0 and γi �= 1 (i = 1, 2, . . . , d) fixed in K. For the simplicity,

these algorithms will be established under the additional assumption that s = 1, which

does not restrict the generality of our considerations.

Since the coordinates xi,j (j = 0, 1, . . . , ni − 1) form geometrical progression, it fol-

lows that the points xβ can be used e.g. in extrapolation problems [1]. It is not clear

if it is possible to extend our fast algorithms to the case of arithmetic progression, or

more generally to the case when

xi,j = λixi,j−1 + δi (i = 1, 2, . . . , d, j = 1, 2, . . . , ni − 1) , (11)

where λi �= 0, δi and xi,0 = κi belong to the field K [2]. Of course, in order to evaluate

the transformation T for the last coordinates one can use multidimensional algorithms
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Joanna Kapusta, Ryszard Smarzewski 9

based on the de Casteljau algorithm, which have the computational complexity of the

order greater than our algorithms, cf. [3], [4], [5] and [6].

Following [7] and [8], our algorithms will use the discrete Fourier transformation

Fm : Km ∋ a → b ∈ Km (12)

and its inverse, which are defined by

bi =
m−1∑

k=0

akψ
ik
m and ai =

1

m

m−1∑

k=0

bkψ
−ik
m (i = 0, 1, . . . ,m− 1),

where ψm is supposed to be a primitive root of the unity of order m in the field K.

It is well known that discrete Fourier transformations can be computed by the famous

FFT-algorithm, which has a running time of order O(m logm) [9].

2 Fast multidimensional convolutions and deconvolutions

In order to present fast algorithms for computation of the Bernstein-Lagrange trans-

formations T and T −1, we need fast algorithms for multidimensional convolutions and

deconvolutions. For this purpose, suppose that a = (a0, a1, . . .) and b = (b0, b1, . . .) are

two finite or infinite sequences. Then the wrapped convolution

c = (c0, c1, . . . , cm−1) = a⊗m b (13)

is defined by

ci =

i∑

k=0

akbi−k (i = 0, 1, . . . ,m− 1) , (14)

while its deconvolution

a = c⊘m b = c⊗m b−1 (b0 �= 0)

is supposed to be the solution

a0 = c0/b0,

ai =

(
ci −

i−1∑

k=0

akbi−k

)
/b0 (i = 1, 2, . . . ,m− 1)

(15)

of the lower triangular system of equations (14). Moreover, the convolutionary inverse

d = (d0, d1, . . . dr−1) = b−1 (16)

is such that

1/b(x) =

r−1∑

k=0

dkx
k +O(xr), (17)

where

b(x) =

m−1∑

k=0

bkx
k and dk =

dk

dxk

(
1

b(x)

)∣∣∣∣
x=0

. (18)
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10 Fast multidimensional Bernstein-Lagrange algorithms

The wrapped convolution satisfies the formula

a⊗m b =
{
F−1
m [Fm(a) · Fm(b)] + F−1

m [Fm(Ψ · a) · Fm(Ψ · b)] /Ψ
}
/2, (19)

where a = (a0, a1, . . . , am−1), b = (b0, b1, . . . , bm−1), Ψ = (1, ψ1
2m, . . . , ψm−1

2m ), ψ2m is

the primitive root of order 2m of the unity in K, and vector operations of multiplication

and division are defined coordinatewise. Formula (19) gives an extremely effective and

fast algorithm of the order O(m logm) to evaluate wrapped convolutions, which is

observed implicitly in [7], see also [8]. Note that it can be also applied to evaluate

bj =

m−1∑

i=0

aiγ
ij (j = 1, 2, . . . ,m− 1) . (20)

Indeed, we have

bj =

m−1∑

i=0

aiγ
ij = rj

⎛
⎝

j∑

i=0

piqj−i +

m−1∑

i=j+1

piq−(j−i+1)

⎞
⎠ (j = 0, 1, ...,m− 1) , (21)

where

rj =

j∏

k=0

γk, pj = aj

j−1∏

k=0

γk, qj =
1

j∏
k=0

γk

(j = 0, 1, . . . ,m− 1) .

Hence

bj−(m−1) = rj−(m−1)

j∑

i=0

dicj−i (j = m− 1,m, . . . , 2m− 2)

with

di =

{
pi for i = 0, 1, ...,m− 1,

0 for i = m,m+ 1, ..., 2m− 2

and

ci =

{
qm−2−i for i = 0, 1, ...,m− 2,

qi−(m−1) for i = m− 1,m, ..., 2m− 2.

Consequently, if d = (di)
2m−2
i=0 , c = (ci)

2m−2
i=0 and r = (ri)

m−1
i=0 , then we get

b =
(
d⊗̃mc

)
· r, (22)

where

d⊗̃mc = Pm (d⊗2m−1 c)

and the projection Pm : K2m−1 → Km is defined by

Pm (e) = (em−1, em, . . . , e2m−2) , e = (e0, e1, . . . , e2m−2) . (23)

It is clear that the order of algorithm (22) is equal to O (m logm). Note, that another

algorithm for computing (20), which has the same order of complexity, was presented

in [10].
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Joanna Kapusta, Ryszard Smarzewski 11

The wrapped convolution can be also applied to evaluate the multidimensional con-

volution

u = a⊗ b, (24)

of a hypermatrix a = (aα)α∈Qn
and vector b = (bi)

d
i=1, with bi = (bi,0, bi,1, . . . , bi,ni−1).

Here coordinates of u are equal to

uα =
∑

β∈Qα

aβbα−β , α = (α1, α2, . . . , αd) ∈ Qn. (25)

Definition 1 ([2]). A hypermatrix

w = (wα)α∈Qn
= a⊗(i) bi ∈ Kn1×n2×···×nd , 1 ≤ i ≤ d, (26)

is said to be the i-th partial hypermatrix convolution of a hypermatrix a = (aα)α∈Qn

and a vector bi = (bi,0, bi,1, . . . , bi,ni−1) , whenever each column

wβ1,...,βi−1,•,βi+1,...,βd
= aβ1,...,βi−1,•,βi+1,...,βd

⊗ni
bi, 0 ≤ βj < nj−1,

j = 1, 2, . . . , i− 1, i+ 1, . . . , d,

of the hypermatrix w is equal to the wrapped convolution of the column

aβ1,...,βi−1,•,βi+1,...,βd
=

(
aβ1,...,βi−1,j,βi+1,...,βd

)ni−1

j=0
. (27)

and vector bi.

The notation of the partial hypermatrix convolutions enables to rewrite the multi-

dimensional convolution u = (uα)α∈Qn
in the following hypermatrix form

u = a⊗ b =
(
. . .

((
a⊗(1) b1

)
⊗(2) b2

)
⊗(3) . . .

)
⊗(d) bd (28)

with bi = (bi,0, bi,1, . . . , bi,ni−1) and a = (aα)α∈Qn
[2]. Hence it is clear that the

fast algorithm for computing an i-th partial hypermatrix convolution should evaluate

N/ni one-dimensional convolutions for vectors of size ni. Therefore, algorithm (28) for

computing the multidimensional convolution is of the order

(N/n1)O(n1 log n1) + ...+ (N/nd)O(nd log nd) = O(N logN), N = n1n2...nd. (29)

The same order is in the algorithm

v = a⊗̃b =
(
. . .

((
a⊗̃

(1)
b1

)
⊗̃

(2)
b2

)
⊗̃

(3)
. . .

)
⊗̃

(d)
bd, (30)

where the i-th extended convolution a⊗̃
(i)
bi i = 1, 2, . . . , d is defined as in Definition 1

with

aβ1,...,βi−1,•,βi+1,...,βd
⊗ni

bi (31)

replaced by

Pni

(
aβ1,...,βi−1,•,βi+1,...,βd

⊗2ni−1 bi
)

(32)

and aα = 0 for α /∈ Qn.

In a similar way one can define the hypermatrix deconvolution

a = u⊘ b, (33)
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12 Fast multidimensional Bernstein-Lagrange algorithms

whenever bi,0 �= 0 for i = 0, 1, . . . , ni − 1. The only difference consists in replacing

the operator ⊗(i) of the i -th partial hypermatrix convolution in Definition 1 by the

corresponding operator ⊘(i) of the i-th partial hypermatrix deconvolution. In other

words, each column of the hypermatrix

a = (aα)α∈Qn
= w ⊘(i) bi ∈ Kn1×n2×···×nd , 1 ≤ i ≤ d, (34)

should be equal to

aβ1,...,βi−1,•,βi+1,...,βd
= wβ1,...,βi−1,•,βi+1,...,βd

⊘ni
bi

= wβ1,...,βi−1,•,βi+1,...,βd
⊗ni

b−1
i ,

where 0 ≤ βj < nj . Then we have

a =
((

. . .
(
u⊘(d) bd

)
...
)
⊘(2) b2

)
⊘(1) b1

=
((

. . .
(
u⊗(d) b−1

d

)
...
)
⊗(2) b−1

2

)
⊗(1) b−1

1 .
(35)

One can prove that the last algorithm for hypermatrix deconvolution is of the order

O(N logN), N = n1n2...nd. (36)

For this purpose, it is sufficient to observe that the convolutionary inverse of a vector

b = (b0, b1, . . . , bm−1) ∈ Km with b0 �= 0 can be computed by the Newton method of

the order O (m logm) [11]. More precisely, let

xi+1 = 2xi − x2
i b, i = 0, 1, . . . , (37)

be the Newton iterative formula for the function f (x) = x−1 − b (x �= 0). Moreover,

suppose that the coefficients

d0, d1, . . . , d2i−1 (i ≥ 1) (38)

of the inverse
(
b0 + b1x+ . . . bm−1x

m−1
)−1

= d0 + d1x+ . . . d2i−1x
2i−1 +O(x2i) (39)

are already computed and that dk = 0 for all k ≥ 2i. Then the single Newton iteration

d = 2 · d− d⊗2i+1 d⊗2i+1 b.

doubles the number of evaluated coefficients dk
(
k = 0, 1, . . . , 2i+1 − 1

)
of the convolu-

tionary inverse. Hence we finally conclude that the iterative Newton formula

d = 2 · d− d⊗2i d⊗2i b, i = 2, 3, . . . , ⌈log2 m� , (40)

with the starting vector d of the form

d =

(
1

b0
,−

b1
b20
, 0, 0 . . .

)
,

generates the required convolutionary inverse

d = (d0, d1, . . . , dm−1) (41)
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Joanna Kapusta, Ryszard Smarzewski 13

of b = (b0, b1, . . . , bm−1), b0 �= 0. Since the computational complexity of the convolution

⊗2i is equal to O(i2i), it is clear that the computational complexity of algorithm (40)

is of the order

O
(
m log2 m+

m

2
log2

m

2
+ . . .+ 2 log2 2

)
= O (m logm) . (42)

This completes the proof that the algorithm (35) is of the order O (N logN) .

3 Fast Bernstein-Lagrange transformation

Now we establish a fast algorithm for evaluating the multivariate polynomial

pn (x) =
∑

α∈Qn

fα

(
n− 1

α

)
xα (1− x)

n−α−1
(43)

at the points xβ = (x1,β1
, x2,β2

, . . . , xd,βd
) with the coordinates of the form

xi,j = λiγ
j
i (i = 1, 2, . . . , d, j = 0, 1, . . . , ni − 1) . (44)

For this purpose, note that

pn (x) =
∑

α∈Qn

fα
∑

β∈Qn−α

(
n− 1

α

)(
n− α− 1

β

)
xα+β (−1)

β

=
∑

β∈Qn

xβ
∑

α∈Qβ+1

fα

(
n− 1

α

)(
n− α− 1

β − α

)
(−1)

β−α

=
∑

β∈Qn

aβx
β ,

(45)

where the coefficients aβ are given by the formula

aβ =
(n− 1)!

(n− β − 1)!

∑

α∈Qβ+1

fα (−1)
β−α

α! (β − α)!
.

Hence one can use the multidimensional convolution in order to get the algorithm

a =

(
f

r
⊗ p

)
· t =

(
. . .

((
f

r
⊗(1) p1

)
⊗(2) p2

)
⊗(3) · · · ⊗(d) pd

)
· t, (46)

where t = (tα)α∈Qn
, r = (rα)α∈Qn

and pi = (pi,0, pi,1, . . . , pi,ni−1) are defined by

rα = α!, tα =
(n− 1)!

(n− α− 1)!
, α ∈ Qn, (47)

and

pi,l =
(−1)

l

(l)!
(i = 1, 2, ..., d, l = 0, 1, ..., ni − 1) . (48)

Therefore, it follows from (28) and (29) that the coefficients aβ can be computed by

the algorithm (46) of the order O(N logN). Furthermore, by inserting formula (44)
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14 Fast multidimensional Bernstein-Lagrange algorithms

into (45), we get

yα = pn (xα) =
∑

β∈Qn

aβλ
βγαβ .

Hence, we obtain

yα =

⎛
⎝

nd−1∑

βd=0

. . .

⎛
⎝

n2−1∑

β2=0

⎛
⎝

n1−1∑

β1=0

aβbβw1,α1−β1

⎞
⎠w2,α2−β2

⎞
⎠ . . . wd,αd−βd

⎞
⎠ qα, (49)

whenever we set

qβ =

d∏

j=1

βj∏

k=0

γk
j , bβ =

d∏

j=1

λ
βj

j

βj−1∏

k=0

γk
j , β ∈ Qn, (50)

and

wj,l =
1

l∏
k=0

γk
j

(j = 1, 2, . . . , d, l = 0, 1, . . . , nj − 1) . (51)

Finally, formula (49) yields the following theorem.

Theorem 1. If T : (fα)α∈Qn
→ (yα)α∈Qn

denotes the d-dimensional Bernstein-

Lagrange transformation with the points xα = (x1,α1 , x2,α2 , . . . , xd,αd
) defined as in

(44), then T can be evaluated by the algorithm

T : y =
(
. . .

((
(a · b) ⊗̃

(1)
w1

)
⊗̃

(2)
w2

)
⊗̃

(3)
. . . ⊗̃

(d)
wd

)
· q, (52)

a =

(
. . .

((
f

r
⊗(1) p1

)
⊗(2) p2

)
⊗(3) · · · ⊗(d) pd

)
· t, (53)

where elements of b = (bα)α∈Qn
, q = (qα)α∈Qn

, wi = (wi,ni−2, . . . , wi,0, wi,0, wi,1, . . . ,

wi,ni−1) , r = (rα)α∈Qn
, t = (tα)α∈Qn

and pi = (pi,ni−2, . . . , pi,0, pi,0, wi,1, . . . , pi,ni−1)

are defined as in formulae (47), (48), (50) and (51). Moreover, this algorithm has the

running time of O(N log (N)) +O(dN), where N = n1n2 · · ·nd.

We note that the term O (dN) in the running time is an estimate of all auxiliary com-

putations (47), (48), (50) and (51), which do not use convolutions. For the complete-

ness of consideration, we summarize the algorithm for computing the multidimensional

Bernstein-Lagrange transformation in more detail.

Algorithm 1. The d - dimensional Bernstein-Lagrange transformation T with

respect to the points xα = (x1,α1 , x2,α2 , . . . , xd,αd
), where α = (α1, α2, . . . , αd) ∈ Qn,

n = (n1, n2, . . . , nd) and xi,j = λiγ
j
i (i = 1, 2, . . . , d, j = 0, 1, 2, . . . , ni − 1).

Input: A hypermatrix f = (fα)α∈Qn
, scalar vectors λ = (λ1, λ2, . . . , λd) and γ =

(γ1, γ2, . . . , γd) in Kd, and the vector n = (n1, n2, . . . , nd) of positive integers.

Output: A hypermatrix y = (yα)α∈Qn
of values yα = pn(xα).

1. Use (47) to evaluate rα, tα for each α ∈ Qn.

2. Use (48) to evaluate pj,l for j = 1, 2, . . . , d, l = 0, 1, . . . , nj − 1.
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Joanna Kapusta, Ryszard Smarzewski 15

3. Perform the componentwise division v = f/r.

4. For i from 1 to d do the following:

4.1. Compute the partial hypermatrix convolution v = v ⊗(i) pi.

5. Perform the componentwise multiplication a = v · t.

6. Use (50) to evaluate bβ , qβ for each β ∈ Qn.

7. Use (51) to evaluate wj,l for j = 1, 2, . . . , d, l = 0, 1, . . . , nj − 1.

8. Perform the componentwise multiplication u = a · b.

9. For i from 1 to d do the following:

9.1. Compute the extended partial hypermatrix convolution u = u⊗̃
(i)
wi.

10. Perform the componentwise multiplication y = u · q.

11. Return (y).

4 Inverse multidimensional Bernstein-Lagrange

transformation

Now we consider the inversion of the multidimensional Bernstein-Lagrange transfor-

mation

T −1 : (yα)α∈Qn
→ (fα)α∈Qn

. (54)

If we know coefficients yα = p(xα) of the Lagrange polynomial ( 6) at the knots

xα = (x1,α1
, x2,α2

, . . . , xd,αd
) (55)

of the form

xi,j = λiγ
j
i , i = 1, 2, .., d, j = 0, 1, . . . , ni − 1, (56)

then we can find the multivariate divided differences

cα = pn [x1,0, . . . , x1,α1 ; . . . ;xd,0, . . . , xd,αd
] =

∑

β∈Qα+1

yβ
d∏

i=1

αi∏
j=0,j �=βi

(xi,βi
− xi,j)

(57)

of the Newton polynomial

pn (x) =
∑

α∈Qn

cα

d∏

i=1

αi−1∏

j=0

(xi − xi,j) , (58)

by using an algorithm of the order O(N log (N))+O(dN) presented in [12]. Moreover,

by using equality (56) the formula (58) can be rewritten in the following form

pn (x) =

n1∑

α1=0

n2∑

α2=0

. . .

nd∑

αd=0

cα1,α2,...,αd

d∏

i=1

xαi

i

αi−1∏

j=0

(
1−

λiγ
j
i

xi

)
. (59)

Since we have (see [13])

n−1∏

k=0

(
1− xqk

)
=

n∑

m=0

[ n
m

]
q
(−1)

m
xmq

m(m−1)
2 (60)
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16 Fast multidimensional Bernstein-Lagrange algorithms

with

[ n
m

]
q
=

n∏
i=0

(
1− qi

)

m∏
i=0

(1− qi)
n−m∏
i=0

(1− qi)

=
[n]q!

[n−m]q! [m]q!
,

it follows from (59) and (60) that

pn (x) =

n1−1∑

β1=0

n2−1∑

β2=0

. . .

nd−1∑

βd=0

aβ1,β2,...,βd

d∏

i=1

xβi

i ,

where

aβ =
1

[β]q!

n1−β1−1∑

α1=0

n2−β2−1∑

α2=0

. . .

nd−βd−1∑

αd=0

cα1,α2,...,αd

d∏

i=1

[αi + βi]q!

[αi]q!
γ

αi(αi−1)
2

i (−λi)
αi .

(61)

Hence we get

aα =
1

[β]q!

∑

α∈Qn−β

cα
[α+ β]q!

[α]q!
γ

α(α−1)
2 (−λ)

α
, α ∈ Qn,

or equivalently

a =

(
. . .

((
(c · v)

←
⊗

(d)

zd

)
←
⊗

(d−1)

zd−1

)
←
⊗

(d−2)

· · ·
←
⊗

(1)

z1

)
· g, (62)

where the elements of v = (vα), g = (gα) and zi = (zi,0, zi,1, . . . , zi,ni−1) are defined by

vα =
d∏

i=1

1

[αi]q!
γ

αi(αi−1)
2

i (−λi)
αi , gα =

1

[α]q!
, α ∈ Qn,

zi,l =

d∏

i=1

[ni − l]q! (i = 1, 2, . . . , d, l = 0, 1, . . . , ni − 1) ,

(63)

and the reversed i-th partial hypermatrix convolution

w
←
⊗

(i)

zi =
̂ŵ ⊗(i) zi (64)

is defined as the i-th partial hypermatrix convolution with its elements written in the

reverse order, where ŵ is the hypermatrix with i-th column written in the reverse order,

too. Finally, one can apply (46) to get the following theorem.

Theorem 2. Let T −1 : (yα)α∈Qn
→ (fα)α∈Qn

be the inverse multidimensional

Bernstein-Lagrange transformation with respect to the points xα = (x1,α1 , x2,α2 ,

. . . , xd,αd
) with the coordinates of the form

xi,j = λiγ
j
i , i = 1, 2, .., d, j = 0, 1, 2, . . . , ni − 1, (65)
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where λi �= 0, γi �= 1 and γi �= 0. Then it can be evaluated by the algorithm

T −1 : f =
(
...
((a

t
⊘(d) pd

)
⊘(d−1) pd−1

)
...
)
⊘(1) p1 · r, (66)

a =

(
. . .

((
(c · v)

←
⊗

(d)

zd

)
←
⊗

(d−1)

zd−1

)
←
⊗

(d−2)

· · ·
←
⊗

(1)

z1

)
· g, (67)

where the elements of t = (tα)α∈Qn
, r = (rα)α∈Qn

, g = (gα)α∈Qn
, c = (cα)α∈Qn

,

v = (vα)α∈Qn
, zi = (zi,0, zi,1, . . . , zi,ni−1) and pi = (pi,0, pi,1, . . . , pi,ni−1) are defined

as in formulae ( 47), (48), (57) and (63). Moreover, this algorithm has the running

time of O(N log (N)) +O(dN), where N = n1n2 · · ·nd.

Algorithm 2. The inverse d-dimensional Bernstein-Lagrange transformation T −1

with respect to the points xα = (x1,α1
, x2,α2

, . . . , xd,αd
), where α = (α1, α2, . . . , αd) ∈

Qn, n = (n1, n2, . . . , nd) and xi,j = λiγ
j
i (i = 1, 2, . . . , d, j = 0, 1, 2, . . . , ni − 1).

Input: A hypermatrix y = (yα)α∈Qn
, scalar vectors λ = (λ1, λ2, . . . , λd) ,

γ = (γ1, γ2, . . . , γd) in Kd, and the vector n = (n1, n2, . . . , nd) of positive inte-

gers.

Output: A hypermatrix f = (fα)α∈Qn
.

1. Use Algorithm 8 from [12] to evaluate cα for each α ∈ Qn.

2. Use (63) to evaluate vα, gα for each α ∈ Qn.

3. Use (63) to evaluate zj,l for j = 1, 2, . . . , d, l = 0, 1, . . . , nj − 1.

4. Perform the componentwise multiplication v = c · v.

5. For i from d down to 1 do the following:

5.1. Compute the reversed partial hypermatrix convolution v = v
←
⊗

(i)

zi.

6. Perform the componentwise multiplication a = v · g.

7. Use (47) to evaluate tα, rα for each α ∈ Qn.

8. Use (48) to evaluate pj,l for j = 1, 2, . . . , d, l = 0, 1, . . . , nj − 1.

9. Perform the componentwise division a = a/t.

10. For i from d down to 1 do the following:

10.1. Compute the partial hypermatrix deconvolution a = a⊘(i) pi.

11. Perform the componentwise multiplication f = a · r.

12. Return (f).

5 Conclusions and remarks

In this paper, we present two new algorithms for the d-dimensional Bernstein-

Lagrange transformation and its inverse for the points

xα = (x1,α1 , x2,α2 , . . . , xd,αd
) , α ∈ Qn (68)

with the coordinates defined by the formulae

xi,j = λiγ
j
i , i = 1, 2, . . . , d, j = 0, 1, . . . , ni − 1,

where γi �= 0, γi �= 1 and λi �= 0 are fixed.
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18 Fast multidimensional Bernstein-Lagrange algorithms

Roughly speaking, the main feature of these algorithms consists in splitting the

computations into two steps. In the first step we compute only quantities, which

require to perform only O (dN) operations. The second step includes computations

of d-dimensional convolutions or deconvolutions of the order O (N logN). Thus, the

computational complexity of this algorithms takes only

O(N logN) +O(dN) (69)

operations, where N = n1n2 . . . nd. Moreover, if we make natural assumption that

ni ≥ 2 for i = 1, 2, . . . , d, then log2 N ≥ d and the order of the algorithm can be

reduced to O(N log (N)).

It should be emphasized, that parts (53) and (66) of the algorithms presented in

Theorems 1 and 2 are valid for arbitrary points xα, α ∈ Qn. However, we do not know

if the remaining parts of these algorithms are true for the points defined in (11).

References

[1] Stoer J., Bulirsch R., Introduction to Numerical Analysis, Springer - Verlag, New York 1993.

[2] Kapusta J., Smarzewski R., Fast algorithms for multivariate interpolation and evaluation at

special points, Journal of Complexity 25 (2009): 332.

[3] Farouki R., Rajan V. T., Algorithms for polynomials in Bernstein form, Computer Aided Geo-

metric Design 5 (1988): 1.

[4] Mainara E., Pen̈a J. M., Evaluation algorithms for multivariate polynomials in Bernstein-Bézier

form, Journal of Approximation Theory 143 (1) (2006): 44.

[5] Peters J., Evaluation and approximate evaluation of the multivariate Bernstein-Bézier form on

a regularly partitioned simplex, ACM Transactions on Mathematical Software 20(4) (1994): 460.

[6] Phien H. N., Dejdumrong N., Efficient algorithms for Bé zier curves, Computer Aided Geometric

Design 17 (2000): 247.

[7] Aho A., Hopcroft J., Ullman J., The design and analysis of computer algorithms, Addison-Wesley,

London 1974.

[8] Smarzewski R., Kapusta J., Fast Lagrange-Newton transformations, Journal of Complexity 23

(2007): 336.

[9] Bini D., Pan V. Y., Polynomial and matrix computations: fundamental algorithms, Birkhäuser

Verlag, 1994.

[10] Aho A., Steiglitz K., Ullman J., Evaluating polynomials at fixed sets of points, SIAM Journal

Comput. 4 (1975): 533.

[11] Borwein J. M., Borwein P. B., Pi and the AGM: A study in analytic number theory and compu-

tational complexity, Canadian Mathematical Society Series of Monographs and Advanced Texts,

John Wiley and Sons, New York, Chichester, Brisbane, Toronto, Singapore, 1987.

[12] Kapusta J., An efficient algorithm for multivariate Maclaurin-Newton transformation, Annales

UMCS Informatica AI VIII (2) (2008): 5.

[13] Andrews G. E., The theory of partitions (Encyclopedia of mathematics and its applications),

Addison-Wesley Publishing Company, 1976.

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 12/01/2026 18:32:48

UM
CS

Pow
er

ed
 b

y T
CPDF (w

ww.tc
pd

f.o
rg

)

http://www.tcpdf.org

