
Annales UMCS Informatica AI XII, 3 (2012) 11–24

DOI: 10.2478/v10065-012-0025-z

Parameterized Hash Functions

Tomasz Bilski1∗, Krzysztof Bucholc1†, Anna Grocholewska-Czurylo1‡,

Janusz Stoklosa1§

1Institute of Control and Information Engineering, Poznań University of Technology

pl. Marii Skłodowskiej Curie 5, 60-965 Poznań, Poland

Abstract – In this paper we describe a family of highly parameterized hash functions. This param-

eterization results in great flexibility between performance and security of the algorithm. The three

basic functions, HaF-256, HaF-512 and HaF-1024 constitute this hash function family. Lengths of

message digests are 256, 512 and 1024 bits respectively. The paper discusses the details of functions

structure. The method used to generate function S-box is also described in detail.

1 Introduction

Hash functions are used to generate a short form of an original message of any

size. This short form is called a hash of a message or a message digest and is used in

many cryptographic applications including message integrity verification and message

authentication, in which case a keyed hash function is used.

Hash function h operates on a message m of an arbitrary length. The result is a

hash value h(m) which has a fixed size.

A lot of recent cryptographic research has been devoted to methods of generating

new hash functions which resulted for example in 64 proposals being submitted to the

NIST SHA-3 competition for a new hash function in 2008 [1].

The objective while designing the HaF family of hash function was obviously the

highest security while maintaining the best possible performance, however, at the same

time the function should allow a flexible balance between security and performance

which was achieved through parameterization.

∗tomasz.bilski@put.poznan.pl
†krzysztof.bucholc@put.poznan.pl
‡anna.grocholewska-czurylo@put.poznan.pl
§janusz.stoklosa@put.poznan.pl

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 22/12/2024 12:43:30

UM
CS

12 Parameterized Hash Functions

The organization of this paper is the following: In Section 2 we describe the family

of the HaF hash functions in general. In Section 3 we concentrate on the details of

S-box generation along with our reasoning for designing and choosing this particular

method. Reference implementation is briefly described in Section 4. Finally Section 5

contains the concluding remarks.

2 Parameterized family HaF of hash functions

2.1 Design Principles

The following assumptions were taken into account during the design process:

• family should be parameterized;

• message digest length should be selectable;

• flexibility between performance and security should be guaranteed;

• iteration structure and compression function should be resistant to known

attacks;

• its iteration mode should be HAIFA (it provides resistance to long message

second preimage attacks, and handles hashing with a salt) [2, 3].

2.2 Description of HaF

The HaF family is formed of the three hash functions: HaF-256, HaF-512 and HaF-

1024, producing hash values (message digests) with the length equal to 256, 512 and

1024 bits, respectively. The general model of HaF family is presented in (Fig. 1). After

formatting the original message m we have the message M . We divide M into blocks

M0,M1, . . . ,Mk˘1, k ∈ {1, 2, . . .}, and each block Mi is processed with the salt s by the

iterative compression function ϕ [2]. The output Hk is the final result of the function.

2.2.1 Notation

In the paper we use the following notation:

a⊙ b – multiplication mod (2n + 1) of n-bit non-zero integers a and b;

Ar – working variable, r = 0, 1, . . . , 15;

Fj – step function, j = 0, 1, . . . , 15;

GF (2) – Galois field of characteristic 2;

length – bitstring representing the length of the original message m, |length| = 128;

lsbq(v) – q least significant bits of the string v;

IV – initial value;

m – original message, |m| < 2128;

M – formatted message;

n – length of the working variable Ar (16 or 32 or 64 bits);

s – salt, |s| = 16n;

|v| – length in bits of a string v;

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 22/12/2024 12:43:30

UM
CS

Tomasz Bilski, Krzysztof Bucholc, Anna Grocholewska-Czurylo... 13

Fig. 1. General model for HaF.

v ≪ t – t-bit left rotation of a string v, |v| = 16n;

v ⊕ w – bitwise XOR of strings v and w, |v| = |w|;

v � w – addition mod 2n of integers represented (in base 2) by strings v and w;

p1(x)⊗ p2(x) – multiplication of polynomials p1 and p2 modulo an irreducible polyno-

mial R(x);

xq – bitstring of the length q; x0 means the empty string;

ϕ – compression function;

‖ – concatenation of bitstrings.

2.2.2 Message Padding

The original message m has to be formatted before hash value computation begins.

The length of formatted message should be a multiple of 16n bits. The message m is

formatted by appending to it a single 1-bit and as few 0-bits as necessary to obtain

a string whose bit-length increased by 128 bits is a multiple of 16n. Finally, we must

additionally append the original message length. As a result, we obtain the formatted

message M = M0‖M1‖ . . . ‖Mk˘1 for some positive integer k, where Mi is a block of M .

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 22/12/2024 12:43:30

UM
CS

14 Parameterized Hash Functions

Therefore, M = m‖10t‖ length, where t is the smallest nonnegative integer necessary

to format m, and |M | = 16nk.

2.2.3 Compression Function

In the proposed schema the compression function is defined as follows: ϕ : {0, 1}μ ×

{0, 1}η × {0, 1}σ → {0, 1}ρ. The integers μ, η and σ are the lengths of block Mi,

chaining variable Hi, and salt s, respectively, where |Mi| = |Hi| = |s| = 16n and

i = 0, 1, . . . , k˘1. The integer ρ is the length of the resulting hash value h(m) = Hk,

|h(m)| = 16n.

The block Mi is processed in two rounds. The length of the block equals 16n bits,

where n is a parameter depending on the hash value we want to obtain. For HaF-256,

HaF-512 and HaF-1024 the parameter n equals 16, 32 and 64 bits, respectively. The

parameter n indicates, in fact, the length of the working variable Ar used in the step

function.

The method of one block processing is presented in Fig. 2. Mi, Hi and s are the

inputs for ϕ. Before processing in round #l, l = 1 or 2, the block Mi is modified. In

the round #1 four least significant bits of Ni = Mi ⊕ s indicate the number of bits the

string Ni is rotated to the left: N∗
i = Ni ≪ lsb4(Ni). Before processing in the round

#2, the blocks are permuted: Ni = H∗
i and Hi = N∗

i . After two rounds, the value H∗
i

of chaining variable is split into 16 subblocks A0, A1, . . . , A15 of equal lengths. Each of

them is modified by adding (mod 2n) the respective input subblock of Hi which is the

input to the round #1. Next, all subblocks A0, A1, . . . , A15 are concatenated giving

Hi+1 = A0‖A1‖ . . . ‖A15.

Fig. 2. Method of one block processing.

2.2.4 Round Function

The round function (Fig. 3) has two inputs Ni, Hi and two outputs N∗
i , H∗

i .

The input block Ni is rotated by the number of bits corresponding to lsb4(Ni)

and added (mod 2 of respective bits) to Hi. Next the block Hi ⊕ (Ni ≪ lsb4(Ni))

is divided into 16 subblocks of equal length: A0, A1, . . . , A15. They are processed

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 22/12/2024 12:43:30

UM
CS

Tomasz Bilski, Krzysztof Bucholc, Anna Grocholewska-Czurylo... 15

Fig. 3. Round function.

by a step function. After processing they are concatenated giving H∗
i . The output

N∗
i = Ni ≪ lsb4(Ni).

2.2.5 Step Function

The essential part of the round is the step function Fj (Fig. 4). In each round the

step function is executed 16 times, for j = 0, 1, . . . , 15.

Fig. 4. Step function Fj .

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 22/12/2024 12:43:30

UM
CS

16 Parameterized Hash Functions

Let GF [x]n be a set of polynomials over GF (2) of the degree smaller than n. If

w(x) ∈ GF [x]n then w(x) = wn˘1x
n˘1 ⊕ wn˘2x

n˘2 ⊕ . . . ⊕ w2x
2 ⊕ w1x ⊕ w0 or sim-

ply w(x) = wn˘1wn˘2 . . . w2w1w0, where wr ∈ GF (2) for r ∈ {0, 1, . . . , n˘1}. Let

u(x), v(x), w(x) ∈ GF [x]n. We define two operations on polynomials, addition (⊕)

and multiplication (⊗): u(x) = v(x) ⊕ w(x) ↔ ut = vt ⊕ wt, t = 1, 2, . . . , n, and

u(x) = v(x)⊗ w(x) = v(x) · w(x) mod R(x), where R(x) is a reduction polynomial of

degree n. In the construction of the step function, the multiplication of polynomials is

performed four times: a0 ⊗ A0, a2 ⊗ A2, a3 ⊗ A3, and a5 ⊗ A5. The polynomials a0,

a2, a3 and a5, presented in the hexadecimal form, are given in Table 1.

Table 1. Polynomials used in the step function.

The reduction polynomials must be irreducible; they are presented in Table 2.

Table 2. Reduction polynomials used in the step function.

After performing multiplications of polynomials, a few additions modulo 2 (⊕) and

additions modulo 2n (�) are done (Fig. 4). In each step the masking constant c =

3236B539391FD066 (in the hexadecimal representation) is used. The particular value

of c depends on n and j, and is indicated by a window of the length n sliding (cyclically,

if necessary) from left to right on bits of c. For example, if n = 16 and j = 0 then

c = 3236; if n = 32 and j = 31 then c = 391FD066; if n = 64 and j = 5 then

c = 6D6A72723FA0CD9 (cyclic rotation of c to the left by 5 bits).

In each step a substitution S
(n)
j depending (as the masking constant c) on

n and j is used. It consists of four S-boxes S0, S1, S2 and S3, each of

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 22/12/2024 12:43:30

UM
CS

Tomasz Bilski, Krzysztof Bucholc, Anna Grocholewska-Czurylo... 17

the dimension 16 × 16, working in such a way that for n = 16, S
(16)
j =

S(j)mod4; for n = 32, S
(32)
j = S(j)mod4‖S(j+1)mod4; and for n = 64, S

(64)
j =

S(j)mod4‖S(j+1)mod4‖S(j+2)mod4‖S(j+3)mod4.

The multiplication modulo 2n+1 of n-bit integers with the zero block corresponding

to 2n is denoted by ⊙ [4].

Table 3. Initial values of chaining variable.

The initial values H0 = h0‖h1‖h2‖ . . . ‖h15 of chaining variable (depending on n) are

given in Table 3 (H0 for n = 64 is obtained as the hexadecimal form of consecutive

512 decimal places after the decimal point of π broken up into groups of 32). Before

processing they must be assigned to A0‖A1‖A2‖ . . . ‖A15 in such a way that hr = Ar,

r = 0, 1, . . . , 15.

2.3 Security Considerations

The round function composed of 16 steps can be represented in the equivalent form

as a linear shift register (FSR) over GF (2n) generating maximum length sequences,

additionally equipped with nonlinear feedback, and clocked 16 times [3]. The corre-

sponding approach dealing with the use of feedback shift registers (over GF (2)) in the

construction of hash functions has been presented in [5]. The function defined by the

nonlinear circuit is a nonlinear 8n-argument function, n = 16 or 32 or 64. For the func-

tion with such a number of arguments (128, 256 and 512, respectively), it is difficult,

from the computational point of view, to perform the best affine approximation attack

[6]. The time needed for the attack is equal to that of the birthday attack, i.e. O(28n).

The sequence produced by the nonlinear circuit is resistant to correlation attack [6].

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 22/12/2024 12:43:30

UM
CS

18 Parameterized Hash Functions

3 S-boxes

3.1 Involutional S

Let F2 be the Galois field GF (2) and Fn
2 be the n-dimensional vector space over F2.

A substitution operation or an n× n S-box (or S-box of the size n× n) is a mapping:

S : Fn
2 → Fn

2 (1)

where n is a fixed positive integer, n ≥ 2. An n-argument Boolean function is a

mapping:

f : Fn
2 → F2. (2)

An S-box S can be decomposed into the sequence S = (f1, f2, . . . , fn) of the Boolean

functions such that S(x1, x2, . . . , xn) = (f1(x1, x2, . . . , xn), f2(x1, x2, . . . , xn), . . . ,

fn(x1, x2, . . . , xn)). We say that the functions f1, f2, . . . , fn are component functions

of S.

In the case of HaF’s S-box n = 16. HaF’s S-box therefore is a function that takes 16

input bits and outputs also 16 bits – it is a 16× 16 S-box. Additionally, it is generated

in such a way that it is its own inverse, i.e., S−1 = S.

HaF’s S-box has been generated using the multiplicative inverse procedure similar to

AES [7] with randomly chosen primitive polynomial defining the Galois field. Nonlin-

earity of this S-box is 32510 and its nonlinear degree is 15. Sixteen Boolean functions

that constitute this S-box have nonlinearities equal to 32510 or 32512. The degree of

each function is equal to 15.

The 16 × 16 S-box can be stored as a table of 65536 word values. The index for

this table is an input of the S-box function, i.e., x1, x2, . . . , x16. The values stored are

S-box outputs (16 bits: f1(x1, x2, . . . , x16), f2(x1, x2, . . . , x16), . . . , f16(x1, x2, . . . , x16)).

To simplify the description of S-box generation let us consider a smaller S-box of the size

8 × 8. For presentation convenience such S-box can be displayed as a 2-dimensional

table (Table 4). The input represented as a two digit hexadecimal number HL is

divided – the low order digit (L) is on the horizontal axis and the high order digit (H)

is on the vertical axis. For example, to see what is the S-box output at input 6F take

6 on the vertical axis and F on the horizontal axis. The S-box output is DA.

Cryptographically a strong S-box should possess some properties that are universally

agreed upon among researchers. Such S-box should be balanced, highly nonlinear,

have the lowest maximum value in its XOR profile (difference distribution table), have

complex algebraic description (especially it should be of high degree). The above

criteria are dictated by linear and differential cryptanalyses and algebraic attacks.

It is a well-known fact that S-boxes generated using finite field inversion mapping

fulfill these criteria to a very high extent. However, they are susceptible to (theoretical)

algebraic attacks. To resist algebraic attacks, multiplicative inverse mapping used to

construct an S-box is composed of an additional invertible affine transformation. This

affine transformation does not affect the nonlinearity of the S-box, its XOR profile nor

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 22/12/2024 12:43:30

UM
CS

Tomasz Bilski, Krzysztof Bucholc, Anna Grocholewska-Czurylo... 19

Table 4. Sample 8× 8 S-box S.

its algebraic degree. The best known example of such an S-box is the S-box of AES.

It has been publicly known and it does not affect its security.

The algorithm used for generating the S-box for the purpose of HaF function pre-

sented in this paper uses a similar method of generating S-boxes. Additionally, it takes

into account the results of some recent studies [8, 9] and incorporates changes in the

S-box generating procedure to make it even more secure.

3.2 Generating Inverse Mapping

HaF S-box is based on the so called inverse mapping x → x−1, where x−1 denotes

the multiplicative inverse in a finite field GF (2n):

S(x) =

{

0 for x = 0

x−1 for x �= 0.
(3)

As mentioned earlier, inversion mapping can be used to generate cryptographically

strong S-boxes.

For any prime integer p and any integer n (n = 1, 2, . . .), there is a unique field with

pn elements, denoted GF (pn). In cryptography p almost always takes the value of

2. To generate an inverse mapping in GF (2n) we need an irreducible polynomial that

defines a Galois field and another polynomial that would be the so called generator (see

below). A polynomial is said to be irreducible if it cannot be factored into nontrivial

polynomials over the same field. The n-bit elements of the Galois field are treated as

polynomials with coefficients in F2. For example, in the case of AES, where S-box

is of the size 8 × 8 we operate mostly on bytes represented as b7b6b5b4b3b2b1b0 which

corresponds to the following polynomial:

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 22/12/2024 12:43:30

UM
CS

20 Parameterized Hash Functions

b7x
7 + b6x

6 + b5x
5 + b4x

4 + b3x
3 + b2x

2 + b1x+ b0 (4)

where bi ∈ {0, 1}.

An irreducible polynomial mentioned above is used to calculate a multiplication in

GF (2n). When two polynomials are multiplied, the resulting product is a polynomial

of degree at most 2(n˘1) – too much to fit into the n-bit data word that represents

polynomials in GF (2n), so the intermediate product of this multiplication is divided

by the irreducible polynomial and the remainder of this division is the result of the

multiplication. For GF (2n) an irreducible polynomial should be of degree n. For

example, in AES (with GF (28)) an irreducible polynomial selected for construction of

the S-box is 11B (in the hexadecimal notation).

A generator in the Galois field is a polynomial whose successive powers take on

every element except zero. Which polynomials are generators in a particular Galois

field depends on the irreducible polynomial selected. So say the polynomial 03 is a

generator in GF (28) with the irreducible polynomial 11B (as in AES), but it is not a

generator in GF (28) with the irreducible polynomial 1BD, for which the generator is

for example 07.

For n = 8 the nonlinearity of this mapping treated as an S-box is 112. For n = 16 it

is 32512. In a general case, the nonlinearity of such a mapping is 2n−1 − 2n/2.

However, such an S-box would always have 0 and 1 as the first two entries. This is

because for x = 0, x−1 = 0 and for x = 1, x−1 = 1. These would be undesirable fixed

points of an S-box. We remove them in the next step.

3.3 Affine Transformation

To avoid algebraic attacks (given multiplicative inversion simple algebraic form) ev-

ery element of the table of multiplicative inverses is changed using an affine transfor-

mation. Such transformation has to be a full permutation, so every element is changed

and all possible elements are represented as the result of a change, so that no two

different bytes are changed to the same byte. After applying this transformation, the

table is still a bijective mapping which is inversible and that is a prerequisite for most

applications of S-boxes. In the case of AES cipher, this affine transformation is given

by the following equation:

b′i = bi ⊕ b(i+4) mod 8 ⊕ b(i+5) mod 8 ⊕ b(i+6) mod 8 ⊕ b(i+7) mod 8 ⊕ ci (5)

where c is an 8-bit constant (in the case of AES, it equals 63 in the hexadecimal

notation). i is the bit position. This transformation can be also represented as the

matrix multiplication:

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 22/12/2024 12:43:30

UM
CS

Tomasz Bilski, Krzysztof Bucholc, Anna Grocholewska-Czurylo... 21

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

b′0
b′1
b′2
b′3
b′4
b′5
b′6
b′7

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 0 0 0 1 1 1 1

1 1 0 0 0 1 1 1

1 1 1 0 0 0 1 1

1 1 1 1 0 0 0 1

1 1 1 1 1 0 0 0

0 1 1 1 1 1 0 0

0 0 1 1 1 1 1 0

0 0 0 1 1 1 1 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

b0

b1

b2

b3

b4

b5

b6

b7

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

+

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1

1

0

0

0

1

1

0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

(6)

The algorithm used for generating S-box S of HaF function in this paper uses the

same transformation, however, adopted for the 16×16 S-box size and with the constant

part of this transformation (namely ci) taken at random so that the resulting S-box

does not have fixed points (such that S(x) = x). Particularly, the two fixed points

mentioned in the previous paragraph (0 and 1) are removed by this transformation.

3.4 Removing Cycles

One of the requirements for the HaF S-box is the absence of cycles. A cycle is such

a sequence of S-box values S0, S1, . . . , Sk−1 where S(i+1) mod k = S(Si). HaF S-box

should have only one such cycle containing all the values of the S-box (a cycle for

which k = 2n).

The affine transformation described in the previous paragraph changes the number

of cycles in an S-box, without changing its nonlinear properties. Note that the fixed

points are also short cycles where k = 1.

The cycles are removed in a procedure with two steps. The first step is actually the

aforementioned affine transformation. It is applied repeatedly with a random value of

c until the S-box with only 2 cycles is found. This might not always be possible. In

such a case, a new S-box has to be generated with another randomly chosen primitive

polynomial using the inverse mapping as described earlier.

When the 2-cycle S-box is found, we move on to the next step, which is performed

together with removing the affine equivalence.

3.5 Removing Affine Equivalence

According to [8, 9], S-boxes based on the multiplicative inverse in a finite field have

such a peculiar property that all component functions of the S-box are from the same

affine equivalence class (all the output functions of the S-box can be mapped onto

one another using the affine transformations). The HaF’s S-box has been processed

to remove this linear redundancy, so that all Boolean functions are now from different

affine equivalence classes, while still maintaining exceptionally high nonlinearity of the

inverse mapping. The proposed S-box has the maximum XOR difference distribution

table value of 6, which is extremely good.

Removing this linear redundancy in the 2-cycle S-box is carried out in such a way

that at the same time it will reduce the number of cycles to only 1. It is done by

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 22/12/2024 12:43:30

UM
CS

22 Parameterized Hash Functions

choosing randomly two S-box entries x and y, each belonging to another cycle, and

rearranging S-box entries in such a way, that both cycles are joined into one.

After such change a test for linear redundancy is performed. If the affine equivalence

is still present (between any component functions), the change is reversed and different

S-box entries are randomly selected and tested – this procedure is carried out until

S-box without the linear redundancy is found. If such an S-box cannot be found, we

need to generate another S-box with inverse mapping.

Many properties of the Boolean functions covered by various cryptographic criteria

(such as algebraic degree and nonlinearity) remain unchanged by affine transformations.

The absolute values of Walsh transform as well as the autocorrelation function are only

rearranged by the affine transformations. The frequency distribution of the absolute

values in these transforms is invariant under such affine transformations. To prove that

two functions are from different equivalence classes, it is therefore sufficient to show that

their respective Walsh transform or autocorrelation function frequency distribution is

different.

4 Reference implementations

The HaF family is formed of the three hash functions: HaF-256, HaF-512 and HaF-

1024, producing hash values (message digests) with the length equal to 256, 512 and

1024 bits. Each function has been implemented in C language and Microsoft Visual

Studio 2008 environment. The HaF test suite gives the following results (for the purpose

of this paper we present only two tests for each representative of the family):

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 22/12/2024 12:43:30

UM
CS

Tomasz Bilski, Krzysztof Bucholc, Anna Grocholewska-Czurylo... 23

HaF can be easily implemented for 32, and 64-bit processors. Here we present

tentative evaluation of HaF performance. The results were obtained for reference (non-

optimized) implementations in ANSI C for HaF-256, HaF-512, and HaF-1024. We

compiled our programs with Intel C++ Compiler Professional 11.1 for Windows.

Both 32-bit and 64-bit codes were generated. Then the programs were executed on

a PC computer with the 2.2 GHz Athlon-64 processor. We measured processing time

for 20MB text file. The results are presented in Tables 5 and 6 respectively.

Table 5. HaF family performance – 32-bit code.

Table 6. HaF family performance – 64-bit code.

As we can see in Tables 5 and 6, the best performance is achieved for HaF-512. For

HaF-1024, 64-bit code performs much better than 32-bit code (speed up to 150%).

The measured processing speed is relatively slow. But we expect substantially better

performance for optimized implementations.

5 Conclusions

Most cryptographic hash functions designers focus on high processing speed. There-

fore relatively simple algorithms are preferred. Implementations of these algorithms

may be vulnerable to fault attack and side channel attack.

In the HaF hash functions the family processing scheme is more elaborated and we

use relatively big 16× 16 S-boxes. It leads to more complex implementation.

We expect it to give greater robustness against fault attack and side channel attack.

The processing speed is relatively small. But we expect that optimised implemen-

tation will perform substantially better. Especially, multithreaded implementation

exploiting parallelism of the algorithm.

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 22/12/2024 12:43:30

UM
CS

24 Parameterized Hash Functions

Acknowledgement

This work was supported by the Polish Ministry of Science and Higher Education as

the 2010–2013 research project and partially by the grant DS-PB/45-085/12.

References

[1] Regenscheid A., Perlner R., Cjen Chang S., Kelsey J., Nandi M., Paul S., Status Report on the First

Round of the SHA-3 Cryptographic Hash Algorithm Competition, Technical Report 7620 NIST

(2009); http://csrc.nist.gov/groups/ST/hash/sha-3/Round1/documents/sha3_NISTIR7620.pdf

[2] Biham E., Dunkelman O., A framework for iterative hash functions - HAIFA, NIST 2nd Hash

Function Workshop, Santa Barbara (2006); also: Cryptology ePrint Archive: Report 2007/278,

http://eprint.iacr.org/2007/278.

[3] Bilski T., Bucholc K., Grocholewska-Czuryło A., Stokłosa J., HaF – A new family of hash func-

tions, Proceedings of the 2nd International Conference on Pervasive Embedded Computing and

Communication Systems, PECCS 2012, Rome, Italy, 24–26 February, 2012, SciTePress (2012):

188.

[4] Lai X., Massey J. L., A proposal for a new block encryption standard, Damgøard I. B. (ed.),

Advances in Cryptology – EUROCRYPT ’90. LNCS 473, Springer, Berlin (1991): 389.

[5] Janicka-Lipska I., Stokłosa J., Boolean feedback functions for full-length nonlinear shift registers,

Journal of Telecommunications and Information Technology 5 (2004,): 28.

[6] Rueppel R. A., Analysis and Design of Stream Ciphers, Springer, Berlin (1986).

[7] Daemen J., Rijmen V., AES Proposal: Rijndael, AES’99 (1999);

http://csrc.nist.gov/CryptoToolkit/aes/ rijndael/1999

[8] Fuller J., Millan W., On Linear Redundancy in the AES S-Box (2002);

http://eprint.iacr.org/2002/111.

[9] Fuller J., Millan W., On Linear Redundancy in S-Boxes, FSE 2003, LNCS 2887, Springer(2003):

74.

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 22/12/2024 12:43:30

UM
CS

Pow
er

ed
 b

y T
CPDF (w

ww.tc
pd

f.o
rg

)

http://www.tcpdf.org

