Dynamical systems as the main instrument for the constructions of new quadratic families and their usage in cryptography

Vasyl Ustimenko\(^2\), Aneta Wroblewska\(^1,2\)

\(^1\)Institute of Fundamental Technological Research Polish Academy of Sciences
ul. Pawinskiego 5B; 02-106 Warszawa, Poland

\(^2\)Institute of Mathematics, Maria Curie-Sklodowska University,
pl. M. Curie-Sklodowskiej 5, 20-031 Lublin, Poland

Abstract – Let \(K\) be a finite commutative ring and \(f = f(n)\) a bijective polynomial map \(f(n)\) of the Cartesian power \(K^n\) onto itself of a small degree \(c\) and of a large order. Let \(f^y\) be a multiple composition of \(f\) with itself in the group of all polynomial automorphisms, of free module \(K^n\). The discrete logarithm problem with the "pseudorandom" base \(f(n)\) (solve \(f^y = b\) for \(y\)) is a hard task if \(n\) is "sufficiently large". We will use families of algebraic graphs defined over \(K\) and corresponding dynamical systems for the explicit constructions of such maps \(f(n)\) of a large order with \(c = 2\) such that all nonidentical powers \(f^y\) are quadratic polynomial maps. The above mentioned result is used in the cryptographical algorithms based on the maps \(f(n)\) – in the symbolic key exchange protocols and public keys algorithms.

1 Introduction

The sequence of subgroups \(G_l\) of Cremona group \(C(K^l)\), \(l \to \infty\) is a family of stable groups if the degree of each \(g\), \(g \in G_l\), is bounded by the constant \(c\) independent of \(l\). The construction of large stable subgroups \(G_l\) with \(c \geq 2\) of the Cremona group is an interesting mathematical task. Obviously the subgroup \(AGL_n(F_p)\) of all affine bijective maps \(xA + b\), where \(x\) and \(b\) are the row vectors from \(V\) and \(A\) is a nonsingular square matrix, is of the order \(p^n(p^n - 1)(p^n - p) \ldots (p^n - p^{n-1})\). The affine transformations form a family of subgroups of stable degree with \(c = 1\). There is an easy way to

\(^*\)ustymenko_vasyl@yahoo.com

\(^{†}\)awroblewska@hektor.umcs.lublin.pl
construct stable subgroups via conjugation of $AGL_l(K)$ with the nonlinear polynomial maps $f_i \in C(K^l)$. Let us refer to such families as the pseudolinear groups. Degrees of f_i and f_i^{-1} are at least two. So, in the case of "pseudorandom" polynomials f_i, such that $\max(f_i, f_i^{-1})$ is bounded by constant, we obtain a stable family with $c \geq 4$.

Algorithm for fast generation of nonlinear pairs (f_i, f_i^{-1}) is introduced in [1] and [2]. Let τ be a Singer cycle from $AGL_l(F_p)$ of the order $p^n - 1$, f_i and f_i^{-1} are the nonlinear maps. Then $g = f_i^{-1} \tau f_i$ looks as the appropriate base for the hidden symbolic discrete logarithm problem.

Notice, that the degree of $f_i^{-1} \tau f_i$, where $\deg(\tau) = 1$ and f_i is the pseudorandom polynomial map of the degree ≥ 2, will be ≥ 4. So, the case of families of stable degree with $c \in \{2, 3\}$ is the most interesting. The family of large stable subgroups of $C(K^l)$ over the general commutative ring K containing at least 3 regular elements (non zero divisors), with $c = 3$ is constructed in [3] via the studies of encryption maps from [4] and the evaluation of their degrees [5]. In this paper we propose a similar result for the case of $c = 2$.

Those results are based on the construction of the family $D(n, q)$ of graphs with large girth and the description of their connected components $CD(n, q)$. The existence of infinite families of graphs of large girth was proven by Paul Erdös’ (see [6]). Together with the common Ramanujan graphs, introduced by G. Margulis ([7], [8]), the graphs $CD(n, q)$ form one of the first explicit constructions of such families with the unbounded degree. The graphs $D(n, q)$ were used for the construction of LDPS codes and turbocodes which were used in real satellite communications (see [9], [10], [11]), for the development of private key encryption algorithms [12],[4],[13],[2], the option to use them for public key cryptography was considered in [14], [15] and in [16], where the related dynamical system was introduced (see also surveys [17],[18]).

The computer simulation ([1]) shows that the stable subgroups related to $D(n, q)$ contain elements of a very large order but our theoretical linear bounds on the order are relatively weak. We hope to improve this gap in the future and justify the use of $D(n, q)$ for the key exchange.

In Section 2 we discuss the discrete logarithm problem for the symmetric group S_{p^n} considered as a totality of all polynomial bijective maps of n-dimensional vector space over F_p. We also consider a more general case of the Cremona group of the whole polynomial automorphism of the free module K^n over the general commutative ring K.

Section 3 is devoted to the explicit construction of the quadratic polynomial maps with the properties given above.

In Section 4 we present the cryptograpical application of the quadratic polynomial maps in the public key algorithm and the key exchange protocol.
2 On the discrete logarithm problem for the Cremona groups

The discrete logarithm problem is a critical problem in the number theory. Like the factorization problem, the discrete logarithm problem is believed to be difficult and also to be the hard direction of a one-way function. For this reason, it has been the basis of several public-key cryptosystems, including the ElGamal system and DSS. Although the discrete logarithm problem exists in any group, when used for cryptographic purposes the group is usually Z_n^*.

The group theoretical discrete logarithm problem is the following: an element g in a finite group G and another element $h \in G$ are given, find a positive integer x such that $g^x = h$.

If $C = Z_p^*$ or $C = Z_{pq}^*$ where p and q are sufficiently large primes, then the complexity of discrete logarithm problem justifies the classical Diffie-Hellman key exchange algorithm and the RSA public key encryption. In the majority of other cases complexity of discrete logarithm problem is not investigated properly. The problem consists in the choice of the base g and the way of the data representation on the group. A group can be defined via generators and relations, as an automorphism group of algebraic variety, as a matrix group, as a permutation group etc. The following example demonstrates the importance of the way of abstract group G representation.

The multiplicative groups Z_p^* are isomorphic to the additive group of the ring Z_{p-1}, if p is "sufficiently large" then the discrete logarithm problem is known as a hard one, but for Z_{p-1} the problem is equivalent to solving of a linear equation.

Let us discuss the case of the symmetric group S_{p^n} of the order $p^n!$ presented as the Cremona group of all bijective polynomial automorphisms of n-dimensional vector space $V = F_p^n$ over the finite prime field F_p.

Let us choose the standard base of V. It is well known that each permutation π from the symmetric group S_{p^n} can be written in the form of "public rule" g:

$$x_1 \to g_1(x_1, x_2, \ldots, x_n), x_2 \to g_2(x_1, x_2, \ldots, x_n), \ldots, x_n \to g_n(x_1, x_2, \ldots, x_n),$$

where g_i are multivariable polynomials from $F_p[x_1, x_2, \ldots, x_n]$.

Notice that there is no good bound on the order of g. Usually the order of nonlinear polynomial map g^k (composition of g with itself, responding to the permutation π^k) increases with the increasing of k. The computation of the order t of "pseudorandom" g is a difficult task. Really, if t is known then the inverse map for g is g^{t-1}, but the best known algorithm of finding g^{-1} has complexity $d^{O(n)}$, where d is the degree of g (see [?]). The efficient general algorithm of finding g^{-1} is known only in the case the degree of g is one, i.e., g is the affine map $xA + b$, where x and b are the row vectors from V and A is the nonsingular square matrix. So, there is a serious complexity gap between linearity and nonlinearity.

The discrete logarithm problem for the cyclic group generated by the "pseudorandom" polynomial map $g \in S_{p^n}$, i.e. the problem of finding solution for the equation $g^x = b$, seems to be very hard. If x is known then $g^{t-x} = b^{-1}$, but the computation of b^{-1} takes $d^{O(n)}$. So, in the case of "pseudorandom" polynomial base g we can use the term hidden symbolic discrete logarithm problem, word hidden is taken because
of the order \(t \) of the cyclic group is unknown, symbolic is taken because generation of the polynomial maps \(g \) and \(b \) can be done via tools of symbolic computations (popular "Maple" or "Mathematica" operating on the polynomial maps or special fast programs of Computer Algebra).

The above mentioned arguments on the complexity of discrete logarithm problem are valid for the Cremona groups \(C(K^n) \) of all polynomial automorphisms of the free module \(K^n \) over the general commutative group. Recall that automorphism of \(K^n \) is a bijective polynomial map \(f : K^n \to K^n \) such that \(f^{-1} \) is also a polynomial map.

Even in the case of fields, the importance of the requirement on polynomiality of \(f^{-1} \) is essential as demonstrated by the following example: for \(n = 1 \) and \(K = R \) (real numbers) map \(x \to x^3 \) is a polynomial map but its inverse is \(y \to y^{1/3} \) (rational map). As follows from the definition, \(C(z_p^n) \) is isomorphic to \(S_{p^n} \).

The group \(C(K^n) \) is an important object of algebraic geometry. There are many open questions about this group. For instance, let \(AGL_n(K) \) be the totality of all invertible affine maps of \(K^n \) onto itself. Describe proper subgroups \(X \) of \(C(K^n) \) containing \(AGL_n(K) \) as proper subgroups. If \(K = F_p \) and \(n \geq 3 \) then \(AGL_n(F_p) \) is a maximal subgroup of \(S_{p^n} \), so \(X \) as above does not exist. For the majority of other rings the question is open.

3 Explicit construction of the quadratic polynomial maps

3.1 Graph theoretical base

The missing definitions of graph-theoretical concepts which appear in this paper can be found in [6]. All graphs under consideration are simple, i.e. undirected without loops and multiple edges. Let \(V(G) \) and \(E(G) \) denote the set of vertices and the set of edges of \(G \), respectively. Then \(|V(G)| \) is called the order of \(G \), and \(|E(G)| \) is called the size of \(G \). A path in \(G \) is called simple if all its vertices are distinct. When it is convenient, we shall identify \(G \) with the corresponding anti-reflexive binary relation on \(V(G) \), i.e. \(E(G) \) is a subset of \(V(G) \times V(G) \) and write \(vGu \) for the adjacent vertices \(u \) and \(v \) (or neighbours). The sequence of distinct vertices \(v_1, \ldots, v_t \), such that \(v_i G v_{i+1} \) for \(i = 1, \ldots, t-1 \) is the path in the graph. The length of a pass is a number of its edges. The distance \(\text{dist}(u, v) \) between two vertices is the length of the shortest pass between them. The diameter of the graph is the maximal distance between two vertices \(u \) and \(v \) of the graph. Let \(C_m \) denote the cycle of the length \(m \), i.e. the sequence of distinct vertices \(v_1, \ldots, v_m \) such that \(v_i G v_{i+1}, i = 1, \ldots, m-1 \) and \(v_m G v_1 \). The girth of a graph \(G \), denoted by \(g = g(G) \), is the length of the shortest cycle in \(G \). The degree of vertex \(v \) is the number of its neighbours (see [19] or [6]).

The incidence structure is the set \(V \) with partition sets \(P \) (points) and \(L \) (lines) and symmetric binary relation \(I \) such that the incidence of two elements implies that one of them is a point and another one is a line. We shall identify \(I \) with the simple graph of this incidence relation (bipartite graph). If the number of neighbours of each element
is finite and depends only on its type (point or line), then the incidence structure is a tactical configuration in the sense of Moore (see [20]). The graph is k-regular if each of its vertices has degree k, where k is a constant. In this section we reformulate the results of [21], [3] where the q-regular tree was described in terms of equations over the finite field F_q.

Let q be a prime power, and let P and L be two countably infinite dimensional vector spaces over F_q. The elements of P will be called points and those of L lines. To distinguish points from lines we use parentheses and brackets: If $x \in V$, then $(x) \in P$ and $[x] \in L$. It will also be advantageous to adopt the notation for the coordinates of points and lines introduced in [7]:

\[
(p) = (p_1, p_{12}, p_{21}, p_{22}, \ldots, p_{ii}, p'_{ii}, p_{i,i+1}, p_{i+1,i}, \ldots),
\]

\[
[l] = [l_1, l_{11}, l_{12}, l_{21}, l_{22}, l'_{22}, l_{23}, \ldots, l_{ii}, l'_{ii}, l_{i,i+1}, l_{i+1,i}, \ldots).
\]

We now define an incidence structure (P, L, I) as follows. We say that the point (p) is incident with the line $[l]$, and we write $(p)[l]$, if the following relations between their coordinates hold:

\[
\begin{align*}
l_{11} - p_{11} &= l_{11}p_1 \\
l_{12} - p_{12} &= l_{11}p_1 \\
l_{21} - p_{21} &= l_{11}p_1 \\
l_{ii} - p_{ii} &= l_{11}p_{i-1,i} \\
l'_{ii} - p'_{ii} &= l_{i,i-1}p_1 \\
l_{i,i+1} - p_{i,i+1} &= l_{ii}p_1 \\
l_{i+1,i} - p_{i+1,i} &= l_{i}p'_{ii}
\end{align*}
\]

(The last four relations are defined for $i \geq 2$.) This incidence structure (P, L, I) is denoted $D(q)$. Now we refer to the incidence graph of (P, L, I), which has the vertex set $P \cup L$ and the edge set consisting of all pairs $\{(p), [l]\}$ for which $(p)[l]$.

To facilitate the notation in the future results, it will be convenient for us to define $p_{-1,0} = l_{0,1} = p_{1,0} = l_{0,1} = 0$, $p_{0,0} = l_{0,0} = -1$, $p'_{0,0} = l'_{0,0} = 1$, $p_{0,1} = p_{1,1}$, and $l_{1,1} = l_{1,1}$, $p'_{1,1} = p_{1,1}$, and to rewrite (1) in the form:

\[
\begin{align*}
l_{ii} - p_{ii} &= l_{11}p_{i-1,i} \\
l'_{ii} - p'_{ii} &= l_{i,i-1}p_1 \\
l_{i,i+1} - p_{i,i+1} &= l_{ii}p_1 \\
l_{i+1,i} - p_{i+1,i} &= l_{i}p'_{ii}
\end{align*}
\]

for $i = 0, 1, 2, \ldots$.

Notice that for $i = 0$, the four conditions (1) are satisfied by every point and line, and, for $i = 1$, the first two equations coincide and give $l_{1,1} - p_{1,1} = l_{1}p_{1}$.

For each positive integer $k \geq 2$ we obtain an incidence structure (P_k, L_k, I_k) as follows. P_k and L_k are obtained from P and L, respectively, by simply projecting each
vector onto its \(k \) initial coordinates. The incidence \(I_k \) is then defined by imposing the first \(k-1 \) incidence relations and ignoring all others. For fixed \(q \), the incidence graph corresponding to the structure \((P_k, L_k, I_k) \) is denoted by \(D(k,q) \). It is convenient to define \(D(1,q) \) to be equal to \(D(2,q) \). The properties of the graphs \(D(k,q) \) that we are concerned with are described in the following theorem:

Theorem 1. [3] Let \(q \) be a prime power, and \(k \geq 2 \). Then
(i) \(D(k,q) \) is a \(q \)-regular edge-transitive bipartite graph of the order \(2q^k \);
(ii) for odd \(k \), \(g(D(k,q)) \geq k + 5 \), for even \(k \), \(g(D(k,q)) \geq k + 4 \).

Let us consider the description of connected components of the graphs.
Let \(k \geq 6 \), \(t = [(k+2)/4] \), and let \(u = (u_1, u_{i1}, \ldots, u_{tt}, u'_{1t}, u'_{it}, u_{tt+1}, u_{t+1,t}, \ldots) \) be a vertex of \(D(k,q) \). (It does not matter whether \(u \) is a point or a line). For every \(r, 2 \leq r \leq t \), let
\[
a_r = a_r(u) = \sum_{i=0}^{r}(u_{i,i',r-i} - u_{i,i+1}u'_{r-i,r-i-1}),
\]
and \(a = a(u) = (a_2, a_3, \ldots, a_t) \). (Here we define \(p_{-1,0} = l_{0,-1} = p_{1,0} = l_{0,1} = 0, p_{00} = l_{1,0} = -1, p_{0,1} = p_1, l_{1,0} = l_1, p'_{00} = l'_{11} = 1 \).

In [21] the following statement was proved.

Proposition 1. Let \(u \) and \(v \) be vertices from the same component of \(D(k,q) \). Then \(a(u) = a(v) \). Moreover, for any \(t - 1 \) field elements \(x_i \in F_q, 2 \leq t \leq [(k+2)/4] \), there exists a vertex \(v \) of \(D(k,q) \) for which
\[
a(v) = (x_2, \ldots, x_t) = (x).
\]

Let us consider the following equivalence relation \(\tau : u \tau v \) iff \(a(u) = a(v) \) on the set \(P \cup L \) of the vertices of \(D(k,q) \) \((D(q)) \). The equivalence class of \(\tau \) containing the vertex \(v \) satisfying \(a(v) = (x) \) can be considered as the set of vertices for the induced subgraph \(EQ_x(k,q) \) \((EQ_x(q)) \) of the graph \(D(k,q) \) \((D(q)) \). When \((x) = (0, \ldots, 0) \), we will omit the index \(v \) and write simply \(EQ(k,q) \).

Let \(CD(q) \) be the connected component of \(D(q) \) which contains \((0,0,\ldots) \). Let \(\tau' \) be an equivalence relation on \(V(D(k,q)) \) \((V(D(q))) \) such that the equivalence classes are the totality of connected components of this graph. Obviously \(u \tau v \) implies \(u \tau' v \).

If \(\text{char } F_q \) is an odd number, the converse of the last proposition is true (see [18] and further references).

Proposition 2. Let \(q \) be an odd number. The vertices \(u \) and \(v \) of \(D(q) \) \((D(k,q)) \) belong to the same connected component if and only if \(a(u) = a(v) \), i.e., \(\tau = \tau' \) and \(EQ(q) = CD(q) \) \((EQ(k,q) = CD(k,q)) \).

The condition \(\text{char } F_q \neq 2 \) in the last proposition is essential. For instance, the graph \(EQ(k,4), k > 3 \), contains 2 isomorphic connected components. Clearly \(EQ(k,2) \) is a
union of cycles $CD(k, 2)$. Thus neither $EQ(k, 2)$ nor $CD(k, 2)$ is an interesting family of graphs of high girth. But the case of graphs $EQ(k, q)$, q is the power of 2, $q > 2$ is very important for the coding theory.

Corollary 1. Let us consider a general vertex

$$x = (x_1, x_{1,1}, x_{2,1}, x_{1,2}, \ldots, x_{i,i}, x_{i,i+1}, x_{i,i+1}, \ldots),$$

$i = 2, 3, \ldots$ of the connected component $CD(k, F_q)$, which contains a chosen vertex v. Then, the coordinates $x_{i,i}, x_{i,i+1}, x_{i,i+1}$ can be chosen independently as “free parameters” from F_q and $x_{i,i}'$ could be computed successively as the unique solution of the equations $a_i(x) = a_i(v)$, $i = 2, 3, \ldots$.

Let $P_{D,t,n} = P_D(t, n, \mathbb{K})$ be the operator of taking the neighbour of point $(p) = (p_0, p_{1,1}, p_{1,2}, p_{2,1}, p_{2,2}, p_{1,1}', p_{1,2}', p_{2,1}', p_{2,2}', \ldots, p_{i,i}, p_{i,i+1}, p_{i,i+1}, \ldots)$ of the kind

$$[l] = [p_0 + t, l_{1,1}, l_{1,2}, l_{2,1}, l_{2,2}, l_{1,1}', l_{1,2}', l_{2,1}', l_{2,2}'],$$

where the parameters $l_{1,1}, l_{1,2}, l_{2,1}, l_{2,2}, l_{1,1}', l_{1,2}', l_{2,1}', l_{2,2}'$ are computed consequently from the equations in the definition of $D(n, \mathbb{K})$. Similarly, $L_{D,t,n} = L_D(t, n, \mathbb{K})$ is the operator of taking the neighbour of line

$$[l] = [l_{1,0}, l_{1,1}, l_{1,2}, l_{2,1}, l_{2,2}, l_{2,1}', l_{2,2}', l_{1,1}'],$$

of the kind

$$(p) = (l_{1,0}, l_{1,1}, l_{1,2}, l_{2,1}, l_{2,2}, l_{2,1}', l_{2,2}', l_{1,1}''),$$

where the parameters $l_{1,1}, l_{1,2}, l_{2,1}, l_{2,2}, l_{1,1}', l_{1,2}', l_{2,1}', l_{2,2}''$ are computed consequently from the equations written above.

Notice, that $P_n = L_n = \mathbb{K}^n$. So, we can think that $P_{D,t,n}$ and $L_{D,t,n}$ are the bijective operators on the free module \mathbb{K}^n.

Theorem 2. For each commutative ring \mathbb{K} transformations $P_{D,t,n}$ and $L_{D,t,n}$ of \mathbb{K}^n form the symmetric bipartite dynamical system $SB_D(\mathbb{K})$ of large girth with $c = 1/2$, such that $t' = -t$, $t \in \mathbb{K}$ and nonidentical transformation of the kind $F_{D_{t_1,t_2},t_3,\ldots,t_n}$ or $F_{D_{t_1,t_2},t_3,\ldots,t_n}$, where $(t_1, t_2, \ldots, t_l) \in \mathbb{K}^l$ is a cubical map.

3.2 Explicit construction of families of quadratic polynomials

For the plaintext, let us take the point defined as above, but with the fixed first coordinate:

$$(p) = (c_1, p_{1,1}, p_{1,2}, p_{2,1}, p_{2,2}, p_{1,1}', p_{1,2}', p_{2,1}', p_{2,2}', \ldots, p_{s,s}, p_{s,s}', p_{s,s+1}, p_{s,s+1}, \ldots),$$

then consequently, for each element of the password t_1, t_2, \ldots, t_l let us do the following steps:

1. The coordinates $c_1, p_{1,1}, p_{1,2}, p_{2,1}, p_{2,2}, p_{1,1}', p_{1,2}', p_{2,1}', p_{2,2}'$, $\ldots, p_{s,s}$ are determined the operator $P_{D,t,n}$ or $L_{D,t,n}$, according to the following "rule":

$$\begin{align*}
(p)^{(0)} &\longrightarrow [l]^{(1)} = P_{D,t,n}(p) \longrightarrow (p)^{(2)} = L_{D,t_2,n}(l) \longrightarrow \ldots \longrightarrow \\
[l]^{(l)} &\longrightarrow P_{D,t_{i+1,n}}(p) \longrightarrow (p)^{(l+1)} = L_{D,t_{i+1,n}}(l)
\end{align*}$$
Dynamical systems as the main instrument for the...
degree 2. Hence the process of an encryption and a decryption can be done in the polynomial time $O(n^3)$. But the cryptoanalyst Cezar, having only a formula for y, has a very hard task to solve the system of n equations of n variables of degree 2. It can be solved in the exponential time $O(2^n)$ by the general algorithm based on the Gröbner basis method. Anyway the studies of specific features of our polynomials could lead to effective cryptanalysis. This is an open problem for specialists.

We consider the Diffie-Hellman algorithm for S_q^n for the key exchange in the case of group. Let $g^k \in S_q^n$ be the new public rule obtained via k iterations of g. In general, the algorithm is following. The correspondents Alice and Bob establish $g \in S_q^n$ via the open communication channel, choose positive integers n_A and n_B, respectively, and exchange the public rules $h_A = g^{n_A}$ and $h_B = g^{n_B}$ via the open channel. Finally, they compute common transformation T as $h_B^{n_A}$ and $h_A^{n_B}$, respectively.

The order of g in the symbolic Diffie-Hellman algorithm must be "sufficiently large" and the number n_A (or n_B) can not be easily computable as functions from degrees for g and h_A. The map g which sends x_i into x_i^t for each i obviously is a bad choice of the base for the discrete logarithm problem. In this case n_A is just a ratio of $\deg h_A$ and $\deg g$.

To avoid such trouble we can look at the family of subgroups G_n of S_q^n, $n \to \infty$ such that the maximal degree of its elements equals c, where c is a small independent constant (groups of degree c or groups of stable degree).

Let us discuss the asymmetry of our modified Diffie-Hellman algorithms of the key exchange in detail. The correspondents Alice and Bob have different information for making computation. Alice chooses dimension n, element g_n as in the above theorem, element $h \in Q_n$ and affine transformation $\tau \in AGL_n(K)$. So she obtains the base $b = \tau^{-1}h^{-1}g_nh\tau$ and sends it in the form of the standard polynomial map to Bob.

Our groups Q_n are defined by the set of their generators and Alice can compute the words $h^{-1}g_nh$, b and its powers very fast. So Alice chooses rather a large number n_A computes $c_A = b^{n_A}$ and sends it to Bob. On his turn Bob chooses his own key n_B and computes $c_B = b^{n_B}$. He and Alice get the collision map c as $c_A^{n_B}$ and $c_B^{n_A}$, respectively.

Notice that the position of adversary is similar to Bob’s position. He (or she) needs to solve one of the equations $b^x = c_B$ or $b^x = c_A$. The algorithm is implemented in the cases of finite fields and rings Z_m for the family of groups Q_n.

References

Dynamical systems as the main instrument for the...