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Abstract – Let K be a finite commutative ring and f = f(n) a bijective poly-

nomial map f(n) of the Cartesian power Kn onto itself of a small degree c and of

a large order. Let fy be a multiple composition of f with itself in the group of all

polynomial automorphisms, of free module Kn. The discrete logarithm problem

with the "pseudorandom" base f(n) (solve fy = b for y) is a hard task if n is

"sufficiently large". We will use families of algebraic graphs defined over K and

corresponding dynamical systems for the explicit constructions of such maps f(n)

of a large order with c = 2 such that all nonidentical powers fy are quadratic

polynomial maps. The above mentioned result is used in the cryptographical al-

gorithms based on the maps f(n) – in the symbolic key exchange protocols and

public keys algorithms.

1 Introduction

The sequence of subgroups Gl of Cremona group C(Kl), l → ∞ is a family of stable

groups if the degree of each g, g ∈ Gl, is bounded by the constant c independent of l.

The construction of large stable subgroups Gl with c ≥ 2 of the Cremona group is an

interesting mathematical task. Obviously the subgroup AGLn(Fp) of all affine bijective

maps xA+b, where x and b are the row vectors from V and A is a nonsingular square

matrix, is of the order pn(pn − 1)(pn − p) . . . (pn − pn−1). The affine transformations

form a family of subgroups of stable degree with c = 1. There is an easy way to
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66 Dynamical systems as the main instrument for the...

construct stable subgroups via conjugation of AGLl(K) with the nonlinear polynomial

maps fl ∈ C(Kl). Let us refer to such families as the pseudolinear groups. Degrees

of fl and fl
−1 are at least two. So, in the case of "pseudorandom" polynomials fl,

such that max(fl, fl
−1) is bounded by constant, we obtain a stable family with c ≥ 4.

Algorithm for fast generation of nonlinear pairs (fl, fl
−1) is introduced in [1] and [2].

Let τ be a Singer cycle from AGLl(Fp) of the order pn−1, fl and fl
−1 are the nonlinear

maps. Then g = fl
−1τfl looks as the appropriate base for the hidden symbolic discrete

logarithm problem.

Notice, that the degree of fl
−1τfl, where deg(τ) = 1 and fl is the pseudorandom

polynomial map of the degree ≥ 2, will be ≥ 4. So, the case of families of stable degree

with c ∈ {2, 3} is the most interesting. The family of large stable subgroups of C(Kl)

over the general commutative ring K containing at least 3 regular elements (non zero

divisors), with c = 3 is constructed in [3] via the studies of encryption maps from [4]

and the evaluation of their degrees [5]. In this paper we propose a similar result for

the case of c = 2.

Those results are based on the construction of the family D(n, q) of graphs with

large girth and the description of their connected components CD(n, q). The existence

of infinite families of graphs of large girth was proven by Paul Erdös’ (see [6]). To-

gether with the common Ramanujan graphs, introduced by G. Margulis ([7], [8]), the

graphs CD(n, q) form one of the first explicit constructions of such families with the

unbounded degree. The graphs D(n, q) were used for the construction of LDPS codes

and turbocodes which were used in real satellite communications (see [9], [10], [11]),

for the development of private key encryption algorithms [12],[4],[13],[2], the option to

use them for public key cryptography was considered in [14], [15] and in [16], where

the related dynamical system was introduced (see also surveys [17],[18]).

The computer simulation ([1]) shows that the stable subgroups related to D(n, q)

contain elements of a very large order but our theoretical linear bounds on the order

are relatively weak. We hope to improve this gap in the future and justify the use of

D(n, q) for the key exchange.

In Section 2 we discuss the discrete logarithm problem for the symmetric group Spn

considered as a totality of all polynomial bijective maps of n-dimensional vector space

over Fp. We also consider a more general case of the Cremona group of the whole

polynomial automorphism of the free module Kn over the general commutative ring

K.

Section 3 is devoted to the explicit construction of the quadratic polynomial maps

with the properties given above.

In Section 4 we present the cryptograpical application of the quadratic polynomial

maps in the public key algorithm and the key exchange protocol.
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Vasyl Ustimenko, Aneta Wroblewska 67

2 On the discrete logarithm problem for the Cremona groups

The discrete logarithm problem is a critical problem in the number theory. Like the

factorization problem, the discrete logarithm problem is believed to be difficult and

also to be the hard direction of a one-way function. For this reason, it has been the

basis of several public-key cryptosystems, including the ElGamal system and DSS. Al-

though the discrete logarithm problem exists in any group, when used for cryptographic

purposes the group is usually Z∗
n.

The group theoretical discrete logarithm problem is the following: an element g in

a finite group G and another element h ∈ G are given, find a positive integer x such

that gx = h.

If C = Z∗
p or C = Z∗

pq where p and q are sufficiently large primes, then the complexity

of discrete logarithm problem justifies the classical Diffie-Hellman key exchange algo-

rithm and the RSA public key encryption. In the majority of other cases complexity

of discrete logarithm problem is not investigated properly. The problem consists in the

choice of the base g and the way of the data representation on the group. A group can

be defined via generators and relations, as an automorphism group of algebraic variety,

as a matrix group, as a permutation group etc. The following example demonstrates

the importance of the way of abstract group G representation.

The multiplicative groups Zp
∗ are isomorphic to the additive group of the ring Zp−1,

if p is "sufficiently large" then the discrete logarithm problem is known as a hard one,

but for Zp−1 the problem is equivalent to solving of a linear equation.

Let us discuss the case of the symmetric group Spn of the order pn! presented as

the Cremona group of all bijective polynomial automorphisms of n-dimensional vector

space V = Fp
n over the finite prime field Fp.

Let us choose the standard base of V . It is well known that each permutation π from

the symmetric group Spn can be written in the form of "public rule" g:

x1 → g1(x1, x2, . . . , xn), x2 → g2(x1, x2, . . . , xn), . . . , xn → gn(x1, x2, . . . , xn), where

gi are multivariable polynomials from Fp[x1, x2, . . . , xn].

Notice that there is no good bound on the order of g. Usually the order of nonlinear

polynomial map gk (composition of g with itself, responding to the permutation πk)

increases with the increasing of k. The computation of the order t of "pseudorandom"

g is a difficult task. Really, if t is known then the inverse map for g is gt−1, but the

best known algorithm of finding g−1 has complexity dO(n), where d is the degree of g

(see [?]).The efficient general algorithm of finding g−1 is known only in the case the

degree of g is one, i. e. g is the affine map xA+ b, where x and b are the row vectors

from V and A is the nonsingular square matrix. So, there is a serious complexity gap

between linearity and nonlinearity.

The discrete logarithm problem for the cyclic group generated by the "pseudoran-

dom" polynomial map g ∈ Spn , i. e. the problem of finding solution for the equation

gx = b, seems to be very hard. If x is known then gt−x = b−1, but the computation

of b−1 takes dO(n). So, in the case of "pseudorandom" polynomial base g we can use

the term hidden symbolic discrete logarithm problem, word hidden is taken because
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68 Dynamical systems as the main instrument for the...

of the order t of the cyclic group is unknown, symbolic is taken because generation of

the polynomial maps g and b can be done via tools of symbolic computations (popular

"Maple" or "Mathematica" operating on the polyomial maps or special fast programs

of Computer Algebra).

The above mentioned arguments on the complexity of discrete logarithm problem

are valid for the Cremona groups C(Kn) of all polynomial automorphisms of the free

module Kn over the general commutative group. Recall that automorphism of Kn is

a bijective polynomial map f : Kn → Kn such that f−1 is also a polynomial map.

Even in the case of fields, the importance of the requirement on polynomiality of

f−1 is essential as demonstrated by the following example: for n = 1 and K = R (real

numbers) map x → x3 is a polynomial map but its inverse is y → y1/3 (rational map).

As follows from the definition, C(zp
n) is isomorphic to Spn .

The group C(Kn) is an important object of algebraic geometry. There are many open

questions about this group. For instance, let AGln(K) be the totality of all invertible

affine maps of Kn onto itself. Describe proper subgroups X of C(Kn) containing

AGLn(K) as proper subgroups. If K = Fp and n ≥ 3 then AGLn(Fp) is a maximal

subgroup of Spn , so X as above does not exist. For the majority of other rings the

question is open.

3 Explicit construction of the quadratic polynomial maps

3.1 Graph theoretical base

The missing definitions of graph-theoretical concepts which appear in this paper can

be found in [6]. All graphs under consideration are simple, i.e. undirected without

loops and multiple edges. Let V (G) and E(G) denote the set of vertices and the set

of edges of G, respectively. Then |V (G)| is called the order of G, and |E(G)| is called

the size of G. A path in G is called simple if all its vertices are distinct. When it is

convenient, we shall identify G with the corresponding anti-reflexive binary relation on

V (G), i.e. E(G) is a subset of V (G)× V (G) and write vGu for the adjacent vertices u

and v (or neighbours). The sequence of distinct vertices v1, . . . , vt, such that viGvi+1

for i = 1, . . . , t − 1 is the pass in the graph. The length of a pass is a number of its

edges. The distance dist(u, v) between two vertices is the length of the shortest pass

between them. The diameter of the graph is the maximal distance between two vertices

u and v of the graph. Let Cm denote the cycle of the length m, i.e. the sequence of

distinct vertices v1, . . . , vm such that viGvi+1, i = 1, . . . ,m− 1 and vmGv1. The girth

of a graph G, denoted by g = g(G), is the length of the shortest cycle in G. The degree

of vertex v is the number of its neighbuors (see [19] or [6]).

The incidence structure is the set V with partition sets P (points) and L (lines) and

symmetric binary relation I such that the incidence of two elements implies that one of

them is a point and another one is a line. We shall identify I with the simple graph of

this incidence relation (bipartite graph). If the number of neighbours of each element
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is finite and depends only on its type (point or line), then the incidence structure is a

tactical configuration in the sense of Moore (see [20]). The graph is k-regular if each

of its vertices has degree k, where k is a constant. In this section we reformulate the

results of [21], [3] where the q-regular tree was described in terms of equations over

the finite field Fq.

Let q be a prime power, and let P and L be two countably infinite dimensional

vector spaces over Fq. The elements of P will be called points and those of L lines. To

distinguish points from lines we use parentheses and brackets: If x ∈ V , then (x) ∈ P

and [x] ∈ L. It will also be advantageous to adopt the notation for the coordinates of

points and lines introduced in [7]:

(p) = (p1, p11, p12, p21, p22, p
′
22, p23, . . . , pii, p

′
ii, pi,i+1, pi+1,i, . . .),

[l] = [l1, l11, l12, l21, l22, l
′
22, l23, . . . , lii, l

′
ii, li,i+1, li+1,i, . . .).

We now define an incidence structure (P,L, I) as follows. We say that the point (p)

is incident with the line [l], and we write (p)I[l], if the following relations between their

coordinates hold:

l11 − p11 = l1p1

l12 − p12 = l11p1

l21 − p21 = l1p11 (1)

lii − pii = l1pi−1,i

l′ii − p′ii = li,i−1p1

li,i+1 − pi,i+1 = liip1

li+1,i − pi+1,i = l1p
′
ii

(The last four relations are defined for i ≥ 2.) This incidence structure (P,L, I) is

denoted D(q). Now we refer to the incidence graph of (P,L, I), which has the vertex

set P ∪ L and the edge set consisting of all pairs {(p), [l]} for which (p)I[l].

To facilitate the notation in the future results, it will be convenient for us to define

p−1,0 = l0,−1 = p1,0 = l0,1 = 0, p0,0 = l0,0 = −1, p′0,0 = l′0,0 = 1, p0,1 = p1, l1,0 = l1,

l′1,1 = l1,1, p
′
1,1 = p1,1, and to rewrite (1) in the form :

lii − pii = l1pi−1,i

l′ii − p′ii = li,i−1p1

li,i+1 − pi,i+1 = liip1

li+1,i − pi+1,i = l1p
′
ii

for i = 0, 1, 2, . . ..

Notice that for i = 0, the four conditions (1) are satisfied by every point and line,

and, for i = 1, the first two equations coincide and give l1,1 − p1,1 = l1p1.

For each positive integer k ≥ 2 we obtain an incidence structure (Pk, Lk, Ik) as

follows. Pk and Lk are obtained from P and L, respectively, by simply projecting each
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70 Dynamical systems as the main instrument for the...

vector onto its k initial coordinates. The incidence Ik is then defined by imposing the

first k−1 incidence relations and ignoring all others. For fixed q, the incidence graph

corresponding to the structure (Pk, Lk, Ik) is denoted by D(k, q). It is convenient to

define D(1, q) to be equal to D(2, q). The properties of the graphs D(k, q) that we are

concerned with are described in the following theorem:

Theorem 1. [3] Let q be a prime power, and k ≥ 2. Then

(i) D(k, q) is a q-regular edge-transitive bipartite graph of the order 2qk ;

(ii) for odd k, g(D(k, q)) ≥ k + 5, for even k, g(D(k, q)) ≥ k + 4.

Let us consider the description of connected components of the graphs.

Let k ≥ 6, t = [(k + 2)/4], and let u = (u1, u11, · · · , utt, u
′
tt, ut,t+1, ut+1,t, · · · ) be a

vertex of D(k, q). (It does not matter whether u is a point or a line). For every r,

2 ≤ r ≤ t, let

ar = ar(u) =

r∑

i=0

(uiiu
′
r−i,r−i − ui,i+1ur−i,r−i−1),

and a = a(u) = (a2, a3, · · · , at). (Here we define

p−1,0 = l0,−1 = p1,0 = l0,1 = 0, p00 = l00 = −1, p0,1 = p1, l1,0 = l1, p
′
00 = l′00 = 1

l′11 = l11, p
′
1,1 = p1,1).

In [21] the following statement was proved.

Proposition 1. Let u and v be vertices from the same component of D(k, q). Then

a(u) = a(v). Moreover, for any t− 1 field elements xi ∈ Fq, 2 ≤ t ≤ [(k + 2)/4], there

exists a vertex v of D(k, q) for which

a(v) = (x2, . . . , xt) = (x).

Let us consider the following equivalence relation τ : uτv iff a(u) = a(v) on the

set P ∪ L of the vertices of D(k, q) (D(q)). The equivalence class of τ containing

the vertex v satisfying a(v) = (x) can be considered as the set of vertices for the

induced subgraph EQ(x)(k, q) (EQ(x)(q)) of the graph D(k, q) (respectively, D(q)).

When (x) = (0, · · · , 0), we will omit the index v and write simply EQ(k, q).

Let CD(q) be the connected component of D(q) which contains (0, 0, . . .). Let τ ′

be an equivalence relation on V (D(k, q)) (V (D(q))) such that the equivalence classes

are the totality of connected components of this graph. Obviously uτv implies uτ ′v.

If char Fq is an odd number, the converse of the last proposition is true (see [18] and

further references).

Proposition 2. Let q be an odd number. The vertices u and v of D(q) (D(k, q))

belong to the same connected component if and only if a(u) = a(v), i.e., τ = τ ′ and

EQ(q) = CD(q) (EQ(k, q) = CD(k, q)).

The condition charFq �= 2 in the last proposition is essential. For instance, the graph

EQ(k, 4)), k > 3, contains 2 isomorphic connected components. Clearly EQ(k, 2) is a
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union of cycles CD(k, 2). Thus neither EQ(k, 2) nor CD(k, 2) is an interesting family

of graphs of high girth. But the case of graphs EQ(k, q), q is the power of 2, q > 2 is

very important for the coding theory.

Corollary 1. Let us consider a general vertex

x = (x1, x1,1, x2,1, x1,2 · · · , xi,i, x
′

i,i, xi+1,i, xi,i+1, · · · ),

i = 2, 3, · · · of the connected component CD(k, Fq), which contains a chosen vertex v.

Then, the coordinates xi,i, xi,i+1, xi+1,i can be chosen independently as “free param-

eters” from Fq and x′
i,i could be computed successively as the unique solution of the

equations ai(x) = ai(v), i = 2, 3, . . . .

Let PD,t,n = PD(t, n,K) be the operator of taking the neighbour of point

(p) = (p0,1, p1,1, p1,2, p2,1, p2,2, p
′
2,2, p2,3, . . . , pi,i, p

′
i,i, pi,i+1, pi+1,i, . . .),

of the kind

[l] = [p0,1 + t, l1,1, l1,2, l2,1, l2,2, l
′
2,2, l2,3, . . . , li,i, l

′
i,i, li,i+1, li+1,i, . . .],

where the parameters l1,1, l1,2, l1,2, l2,2, . . . , li,i, l
′
i,i, li,i+1, li+1,i, . . . are computed conse-

quently from the equations in the definition of D(n,K). Similarly, LD,t,n = LD(t, n,K)

is the operator of taking the neighbour of line

[l] = [l1,0, l1,1, l1,2, l2,1, l2,2, . . . , li,i, li,i+1, l
′
i,i, li+1,i, . . .]

of the kind

(p) = (l1,0 + t, p1,1, p1,2, p2,1, p2,2, . . . , pi,i, p
′
i,i, pi,i+1, pi+1,i, . . .),

where the parameters p1,1, p1,2, p2,1, p2,2,. . ., pi,i, p
′
i,i, pi,i+1, pi+1,i, . . . are computed

consequently from the equations written above.

Notice, that Pn = Ln = K
n. So, we can think that PD,t,n and LD,t,n are the bijective

operators on the free module K
n.

Theorem 2. For each commutative ring K transformations PD,t,n and LD,t,n of Kn

form the symmetric bipartite dynamical system SBD(K) of large girth with c = 1/2,

such that t′ = −t, t ∈ K and nonidentical transformation of the kind FDP ,t1,t2,...,tl,n or

FDL,t1,t2,...,tl,n, where (t1, t2, . . . , tl) ∈ K
l is a cubical map.

3.2 Explicit construction of families of quadratic polynomials

For the plaintext, let us take the point defined as above, but with the fixed first

coordinate:

(p) = (c1, p1,1, p1,2, p2,1, p2,2, p
′
2,2, p2,3, . . . , ps,s, p

′
s,s, ps,s+1, ps+1,s),

then consequently, for each element of the password t1, t2, . . . , tl let us do the follow-

ing steps:

(1) The coordinates c1, p1,1, p1,2, p2,1, p2,2, p
′
2,2, p2,3, . . . , ps,s are determined the

operator PD,t,n or LD,t,n, according to the following "rule":

(p)(0) −→ [l](1) = PD,t1,n((p)
(0)) −→ (p)(2) = LD,t2,n([l]

(1)) −→ . . . −→

[l](l) = PD,tl,n((p)
(l−1)) −→ (p)(l+1) = LD,tl+1,n([l]

(l))
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(2) The last coordinate with "primes", i.e., for s = ⌊n+ 2/4
, using ar = ar(u) =
r∑

i=0

(uiiu
′
r−i,r−i − ui,i+1ur−i,r−i−1) = 0, we get:

l′ss =
∑s−2

i=0 (liil
′
s−i,s−i − li,i+1ls−i,s−i−1) + ls−1,s−1l11 − ls−1,sl1 + lss or

p′ss =
∑s−2

i=0 (piip
′
s−i,s−i − pi,i+1ps−i,s−i−1)+ ps−1,s−1p11 − ps,s−1p1 + pss,

respectively.

(3) The last two coordinates ps,s+1, ps+1,s are calculated using the operator PD,t,n

or LD,t,n.

Since we have fixed the first coordinate, the operators PD,t,n and LD,t,n of Kn make

the coordinates c1, p1,1, p1,2, p2,1, p2,2, p
′
2,2, p2,3, . . . , ps,s linear maps. The coordinates

l′ss and p′ss, which are quadratic maps, are made invisible. The last two coordinates

ps,s+1 and ps+1,s are also quadratic.

4 Public key cryptography and key exchange protocol

We may assume that g is a private key encryption map corresponding to the numer-

ical string (x1, x2, . . . , xs) (the key). It is clear that the inverse map corresponds to the

reverse string (xs, xs−1, . . . , x1).

We implement the public key encryption and the symbolic version of the Diffie-

Hellman key exchange corresponding to the quadratic maps f1gnf2 and f1
−1gnf1 with

the fixed sparse affine transformations f1 and f2.

The typical choice of fi is a linear transformation x1 → x1+r2x2+ · · ·+rnxn, where

the parameters rj are taken consecutively from the infinite pseudorandom sequences

of the regular elements ri, i = 2, 3, . . . .

Public key and key exchange algorithms are implemented on the level of symbolic

computations while decryption f2
−1gnf1

−1 will be done by numerical algorithm A =

A(f1, f2) with the key space (x1, x2, . . . , xs) of variable dimension s. Obviously we can

use A independently as the symmetric private key algorithm.

Notice, that in the case of f2 = f1
−1 and the periodic password obtained via repe-

tition of the word (a, b, α1, α2, . . . , α2s), where −α2s + a and −α2s + b are the regular

elements of the ring K, the security of public rule and related stream cipher is con-

nected with the studies of discrete logarithm problem in the Cremona group (the base is

f1gf1−1, where g is the encryption map corresponding to string (a, b, α1, α2, . . . , α2s)).

To use these results in the public key cryptography over K = Fq, let us combine the

quadratic polynomial transformations Nl (given in 3.2) with two affine transformation

T1 and T2. Alice can use T1NlT2 for the construction of the following public map of

y = (F1(x1, . . . , xn), . . . , Fn(x1, . . . , xn))

Fi(x1, . . . , xn) are the polynomials of n variables written as the sums of monomials

of the kind xm1

i1
xm2

i2
with the coefficients from K = Fq, where i1, i2 ∈ 1, 2, . . . , n and

m1,m2 are positive integers such that m1 +m2 ≤ 2. As mentioned before, the poly-

nomial equations yi = Fi(x1, x2, . . . , xn), i = 1, 2 . . . n, which are made public, are of
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degree 2. Hence the process of an encryption and a decryption can be done in the

polynomial time O(n3). But the cryptoanalyst Cezar, having only a formula for y, has

a very hard task to solve the system of n equations of n variables of degree 2. It can be

solved in the exponential time O(2n
2

) by the general algorithm based on the Gröbner

basis method. Anyway the studies of specific features of our polynomials could lead to

effective cryptanalysis. This is an open problem for specialists.

We consider the Diffie-Hellman algorithm for Sqn for the key exchange in the case of

group. Let gk ∈ Sqn be the new public rule obtained via k iterations of g. In general,

the algorithm is following. The correspondents Alice and Bob establish g ∈ Sqn via the

open communication channel, choose positive integers nA and nB , respectively, and

exchange the public rules hA = gnA and hB = gnB via the open channel. Finally, they

compute common transformation T as hB
nA and hA

nB , respectively.

The order of g in the symbolic Diffie-Hellman algorithm must be "sufficiently large"

and the number nA (or nB) can not be easily computable as functions from degrees

for g and hA. The map g which sends xi into xi
t for each i obviously is a bad choice

of the base for the discrete logarithm problem. In this case nA is just a ratio of deghA

and degg.

To avoid such trouble we can look at the family of subgroups Gn of Sqn , n → ∞

such that the maximal degree of its elements equals c, where c is a small independent

constant (groups of degree c or groups of stable degree).

Let us discuss the asymmetry of our modified Diffie-Hellman algorithms of the key

exchange in detail. The correspondents Alice and Bob have different information for

making computation. Alice chooses dimension n, element gn as in the above theorem,

element h ∈ Qn and affine transformation τ ∈ AGLn(K). So she obtains the base

b = τ−1h−1gnhτ and sends it in the form of the standard polynomial map to Bob.

Our groups Qn are defined by the set of their generators and Alice can compute

the words h−1gnh, b and its powers very fast. So Alice chooses rather a large number

nA computes cA = bnA and sends it to Bob. On his turn Bob chooses his own key

nB and computes cB = bnB . He and Alice get the collision map c as cA
nB and cB

nA ,

respectively.

Notice that the position of adversary is similar to Bob’s position. He (or she) needs

to solve one of the equations bx = cB or bx = cA. The algorithm is implemented in the

cases of finite fields and rings Zm for the family of groups Qn.
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