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Abstract — Let K be a finite commutative ring and f = f(n) a bijective poly-
nomial map f(n) of the Cartesian power K™ onto itself of a small degree ¢ and of
a large order. Let fY be a multiple composition of f with itself in the group of all
polynomial automorphisms, of free module K"™. The discrete logarithm problem
with the "pseudorandom" base f(n) (solve f¥ = b for y) is a hard task if n is
"sufficiently large". We will use families of algebraic graphs defined over K and
corresponding dynamical systems for the explicit constructions of such maps f(n)
of a large order with ¢ = 2 such that all nonidentical powers f¥ are quadratic
polynomial maps. The above mentioned result is used in the cryptographical al-
gorithms based on the maps f(n) — in the symbolic key exchange protocols and
public keys algorithms.

1 Introduction

The sequence of subgroups G of Cremona group C(K'), I — oo is a family of stable
groups if the degree of each g, g € G, is bounded by the constant ¢ independent of [.
The construction of large stable subgroups G; with ¢ > 2 of the Cremona group is an
interesting mathematical task. Obviously the subgroup AGL,,(F,) of all affine bijective
maps xA + b, where x and b are the row vectors from V and A is a nonsingular square
matrix, is of the order p™(p"™ — 1)(p"™ —p)...(p" — p"~1). The affine transformations
form a family of subgroups of stable degree with ¢ = 1. There is an easy way to

“ustymenko vasyl@yahoo.com
fawroblewska@hektor.umcs.lublin.pl



Pobrane z

czasopisma Annales Al- Informatica http://ai.annales.umcs.pl

Data: 10/01/2026 23:39:08

66

Dynamical systems as the main instrument for the...

construct stable subgroups via conjugation of AGL;(K) with the nonlinear polynomial
maps f; € O(K'). Let us refer to such families as the pseudolinear groups. Degrees
of f; and f;! are at least two. So, in the case of "pseudorandom" polynomials f;,
such that max(f;, ffl) is bounded by constant, we obtain a stable family with ¢ > 4.
Algorithm for fast generation of nonlinear pairs (f;, f; ') is introduced in [1] and [2].
Let 7 be a Singer cycle from AGL;(F}) of the order p” —1, f; and £, " are the nonlinear
maps. Then g = f;~'7f; looks as the appropriate base for the hidden symbolic discrete
logarithm problem.

Notice, that the degree of f;~'7f;, where deg(7) = 1 and f; is the pseudorandom
polynomial map of the degree > 2, will be > 4. So, the case of families of stable degree
with ¢ € {2,3} is the most interesting. The family of large stable subgroups of C(K)
over the general commutative ring K containing at least 3 regular elements (non zero
divisors), with ¢ = 3 is constructed in [3| via the studies of encryption maps from [4]
and the evaluation of their degrees [5]. In this paper we propose a similar result for
the case of ¢ = 2.

Those results are based on the construction of the family D(n,q) of graphs with
large girth and the description of their connected components C'D(n, q). The existence
of infinite families of graphs of large girth was proven by Paul Erdos’ (see [6]). To-
gether with the common Ramanujan graphs, introduced by G. Margulis ([7], [8]), the
graphs C'D(n, q) form one of the first explicit constructions of such families with the
unbounded degree. The graphs D(n, q) were used for the construction of LDPS codes
and turbocodes which were used in real satellite communications (see [9], [10], [11]),
for the development of private key encryption algorithms [12],[4],[13],[2], the option to
use them for public key cryptography was considered in [14], [15] and in [16], where
the related dynamical system was introduced (see also surveys [17],[18]).

The computer simulation ([1]) shows that the stable subgroups related to D(n,q)
contain elements of a very large order but our theoretical linear bounds on the order
are relatively weak. We hope to improve this gap in the future and justify the use of
D(n,q) for the key exchange.

In Section 2 we discuss the discrete logarithm problem for the symmetric group Sp»
considered as a totality of all polynomial bijective maps of n-dimensional vector space
over F,. We also consider a more general case of the Cremona group of the whole
polynomial automorphism of the free module K™ over the general commutative ring
K.

Section 3 is devoted to the explicit construction of the quadratic polynomial maps
with the properties given above.

In Section 4 we present the cryptograpical application of the quadratic polynomial
maps in the public key algorithm and the key exchange protocol.
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2 On the discrete logarithm problem for the Cremona groups

The discrete logarithm problem is a critical problem in the number theory. Like the
factorization problem, the discrete logarithm problem is believed to be difficult and
also to be the hard direction of a one-way function. For this reason, it has been the
basis of several public-key cryptosystems, including the ElGamal system and DSS. Al-
though the discrete logarithm problem exists in any group, when used for cryptographic
purposes the group is usually Z7.

The group theoretical discrete logarithm problem is the following: an element g in
a finite group G and another element h € G are given, find a positive integer x such
that g” = h.

IfC = Z, or C = Z;, where p and ¢ are sufficiently large primes, then the complexity
of discrete logarithm problem justifies the classical Diffie-Hellman key exchange algo-
rithm and the RSA public key encryption. In the majority of other cases complexity
of discrete logarithm problem is not investigated properly. The problem consists in the
choice of the base g and the way of the data representation on the group. A group can
be defined via generators and relations, as an automorphism group of algebraic variety,
as a matrix group, as a permutation group etc. The following example demonstrates
the importance of the way of abstract group G representation.

The multiplicative groups Z,," are isomorphic to the additive group of the ring Z,,_1,
if p is "sufficiently large" then the discrete logarithm problem is known as a hard one,
but for Z,_; the problem is equivalent to solving of a linear equation.

Let us discuss the case of the symmetric group Sp» of the order p"! presented as
the Cremona group of all bijective polynomial automorphisms of n-dimensional vector
space V = F," over the finite prime field F},.

Let us choose the standard base of V. It is well known that each permutation 7 from
the symmetric group Sp» can be written in the form of "public rule" g:

x1 = g1 (21,22, ..., Tpn)y T2 = g2(T1, T2,y o Tn)y ooy Ty — gn(T1, 22, ..., 2p), Where
g; are multivariable polynomials from F)[z1, x2, ..., Z,].

Notice that there is no good bound on the order of g. Usually the order of nonlinear
polynomial map g* (composition of g with itself, responding to the permutation 7*)
increases with the increasing of k. The computation of the order ¢ of "pseudorandom"
g is a difficult task. Really, if ¢ is known then the inverse map for ¢ is ¢g*~!, but the
best known algorithm of finding ¢! has complexity d°(), where d is the degree of g
(see [?]).The efficient general algorithm of finding g—!
degree of ¢ is one, i. e. g is the affine map xA + b, where x and b are the row vectors
from V and A is the nonsingular square matrix. So, there is a serious complexity gap
between linearity and nonlinearity.

is known only in the case the

The discrete logarithm problem for the cyclic group generated by the "pseudoran-
dom" polynomial map g € Sp», i. e. the problem of finding solution for the equation
g® = b, seems to be very hard. If z is known then ¢'~* = b~!, but the computation
of b—1 takes d°™). So, in the case of "pseudorandom" polynomial base g we can use
the term hidden symbolic discrete logarithm problem, word hidden is taken because
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of the order ¢ of the cyclic group is unknown, symbolic is taken because generation of
the polynomial maps g and b can be done via tools of symbolic computations (popular
"Maple" or "Mathematica" operating on the polyomial maps or special fast programs
of Computer Algebra).

The above mentioned arguments on the complexity of discrete logarithm problem
are valid for the Cremona groups C'(K™) of all polynomial automorphisms of the free
module K" over the general commutative group. Recall that automorphism of K" is
a bijective polynomial map f : K™ — K™ such that f~! is also a polynomial map.

Even in the case of fields, the importance of the requirement on polynomiality of
f~!is essential as demonstrated by the following example: for n = 1 and K = R (real
numbers) map x — z° is a polynomial map but its inverse is y — y'/% (rational map).
As follows from the definition, C'(2,") is isomorphic to Spn.

The group C'(K™) is an important object of algebraic geometry. There are many open
questions about this group. For instance, let AGI,,(K) be the totality of all invertible
affine maps of K™ onto itself. Describe proper subgroups X of C(K™) containing
AGL, (K) as proper subgroups. If K = F}, and n > 3 then AGL,,(F},) is a maximal
subgroup of Sy», so X as above does not exist. For the majority of other rings the
question is open.

3 Explicit construction of the quadratic polynomial maps

3.1 Graph theoretical base

The missing definitions of graph-theoretical concepts which appear in this paper can
be found in [6]. All graphs under consideration are simple, i.e. undirected without
loops and multiple edges. Let V(G) and E(G) denote the set of vertices and the set
of edges of G, respectively. Then |V (G)| is called the order of G, and |E(G)] is called
the size of G. A path in G is called simple if all its vertices are distinct. When it is
convenient, we shall identify G with the corresponding anti-reflexive binary relation on
V(G), i.e. E(G) is a subset of V(G) x V(G) and write vGu for the adjacent vertices u
and v (or neighbours). The sequence of distinct vertices vy, ..., v, such that v;Gv;1q
for i = 1,...,t — 1 is the pass in the graph. The length of a pass is a number of its
edges. The distance dist(u,v) between two vertices is the length of the shortest pass
between them. The diameter of the graph is the maximal distance between two vertices
w and v of the graph. Let C,, denote the cycle of the length m, i.e. the sequence of
distinct vertices vy, ..., v, such that v;Gv;41,i=1,...,m — 1 and v,, Gv;. The girth
of a graph G, denoted by g = g(G), is the length of the shortest cycle in G. The degree
of vertex v is the number of its neighbuors (see [19] or [6]).

The incidence structure is the set V' with partition sets P (points) and L (lines) and
symmetric binary relation I such that the incidence of two elements implies that one of
them is a point and another one is a line. We shall identify I with the simple graph of
this incidence relation (bipartite graph). If the number of neighbours of each element
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is finite and depends only on its type (point or line), then the incidence structure is a
tactical configuration in the sense of Moore (see [20]). The graph is k-regular if each
of its vertices has degree k, where k is a constant. In this section we reformulate the
results of [21], [3] where the g-regular tree was described in terms of equations over
the finite field F,.

Let ¢ be a prime power, and let P and L be two countably infinite dimensional
vector spaces over F,. The elements of P will be called points and those of L lines. To
distinguish points from lines we use parentheses and brackets: If € V| then (z) € P
and [z] € L. It will also be advantageous to adopt the notation for the coordinates of
points and lines introduced in [7]:

(p) = (pl7p115p127p215p227p/225p237 cee 7pii,pgiapi,i+17pi+l7ia o ')a

[l] - [lla lll; 112; 121; 122; 1/22; 123; sy l”,l,,”, li,i+1a li+1,i7 .. )

We now define an incidence structure (P, L, I) as follows. We say that the point (p)
is incident with the line [I], and we write (p)I[l], if the following relations between their
coordinates hold:

lin —pn =hpr
lig = p12 = luips
lo1 — p21 = lipn (1)
lis — pii = lipi—1s
léi - pgi =lii—1p1
liit1 — Piie1 = lupr
lit1,i = Pit1,i = Lip;
(The last four relations are defined for ¢ > 2.) This incidence structure (P, L,T) is

denoted D(q). Now we refer to the incidence graph of (P, L, T), which has the vertex
set P U L and the edge set consisting of all pairs {(p), [I]} for which (p)I[l].

To facilitate the notation in the future results, it will be convenient for us to define
p-1,0=1lo—1 =p10=1lo1 =0, poo =loo =1, pho =loo =1, po1 = p1, Lo = 1,
111 =111, P11 = P11, and to rewrite (1) in the form :

lis = pis = Lipi—14
lii = Py = lii-am
liit1 — Piie1 = lupr
livii—Piv1,i = LDy
fori=0,1,2,....
Notice that for ¢ = 0, the four conditions (1) are satisfied by every point and line,
and, for ¢ = 1, the first two equations coincide and give Iy 1 —p1,1 = lip1.
For each positive integer k& > 2 we obtain an incidence structure (Py, Ly, I}) as
follows. P and Lj are obtained from P and L, respectively, by simply projecting each
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vector onto its k initial coordinates. The incidence I} is then defined by imposing the
first k—1 incidence relations and ignoring all others. For fixed ¢, the incidence graph
corresponding to the structure (Py, Lg, I;) is denoted by D(k,q). It is convenient to
define D(1, q) to be equal to D(2,q). The properties of the graphs D(k, q) that we are
concerned with are described in the following theorem:

Theorem 1. [3] Let ¢ be a prime power, and k > 2. Then
(i) D(k,q) is a g-regular edge-transitive bipartite graph of the order 2¢* ;
(ii) for odd k, g(D(k,q)) > k + 5, for even k, g(D(k,q)) > k + 4.

Let us consider the description of connected components of the graphs.

Let £ > 6, t = [(k+2)/4], and let u = (w1, w11, -, Upt, Wy, Up p41, Ut 1,6, -+ ) DE &
vertex of D(k,q). (It does not matter whether w is a point or a line). For every r,
2<r<t,let

T

ar = ap(u) =3 (Wil 5 — Ui if 1t —ip—io1),
=0

and a = a(u) = (ag,as, - ,a;). (Here we define

P—1,0 = lo,—1 = P10 =log =0, poo = loo = =1, po,1 = p1, lio = l1, Poo = oo = 1
111 = li1, P1a = P11)-

In [21] the following statement was proved.

Proposition 1. Let u and v be vertices from the same component of D(k, ¢). Then
a(u) = a(v). Moreover, for any ¢ — 1 field elements x; € F,, 2 <t < [(k + 2)/4], there
exists a vertex v of D(k,q) for which

a(v) = (xz9,...,2¢) = (x).

Let us consider the following equivalence relation 7 : wurv iff a(u) = a(v) on the
set P U L of the vertices of D(k,q) (D(q)). The equivalence class of 7 containing
the vertex v satisfying a(v) = (x) can be considered as the set of vertices for the
induced subgraph EQ(;(k,q) (EQ)(q)) of the graph D(k,q) (respectively, D(q)).
When (2) = (0,---,0), we will omit the index v and write simply FQ(k, q).

Let C'D(q) be the connected component of D(q) which contains (0,0,...). Let 7/
be an equivalence relation on V(D(k,q)) (V(D(q))) such that the equivalence classes
are the totality of connected components of this graph. Obviously urv implies ur’v.
If char Fj is an odd number, the converse of the last proposition is true (see [18] and
further references).

Proposition 2. Let ¢ be an odd number. The vertices v and v of D(q) (D(k,q))
belong to the same connected component if and only if a(u) = a(v), i.e., 7 = 7/ and

EQ(q) = CD(q) (EQ(k,q) = CD(k,q)).

The condition charF, # 2 in the last proposition is essential. For instance, the graph
EQ(k,4)), k > 3, contains 2 isomorphic connected components. Clearly EQ(k,2) is a
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union of cycles CD(k,2). Thus neither FQ(k,2) nor CD(k,2) is an interesting family
of graphs of high girth. But the case of graphs EQ(k,q), ¢ is the power of 2, ¢ > 2 is
very important for the coding theory.

Corollary 1. Let us consider a general vertex

’

€r = (I1,171,171’2,1,$1,2 C oy Ligiy L gy LiLyis L1y 0 )7
i1 =2,3,--- of the connected component CD(k, F,;), which contains a chosen vertex v.
Then, the coordinates x;;, =;y1, Ti+1,; can be chosen independently as “free param-

eters” from F, and z}; could be computed successively as the unique solution of the
equations a;(x) = a;(v), i = 2,3,....

Let Pp . = Pp(t,n,K) be the operator of taking the neighbour of point
(p) = (po,l7pl,lap1,25p2,17p2,27p12}27p2,37 IO >pi,iap;’7z’7pi,i+1api+1,i7 .. ')7

of the kind
[l] = [po,l + tv ll,la ll,2a l2,1a 12,27 ll2727 l2,37 D) li,i7 lg’iv li,i-‘rla li+1,i7 .. ']7
where the parameters [y 1, 112,112,122, ..., i, l;’i, lii+1,lix1,4, - .. are computed conse-

quently from the equations in the definition of D(n,K). Similarly, Lp ¢, = Lp(t,n,K)
is the operator of taking the neighbour of line

[ =[hol1,lh2 1l sl i, g livras - -
of the kind
(p) = (l1,0 +t,p1,1,P1,2,P2,1, 02,25 - - - vpi,i,p;,iapi,i—&-lapi—&-l,ia )
where the parameters P1,1, P1,2, P2,1, P2,25+ -+ Pi,is p;,iv Pii+1, Pit1,iy -+ - aI€ CompU'ted

consequently from the equations written above.
Notice, that P,, = L,, = K". So, we can think that Pp ;,, and Lp ¢, are the bijective
operators on the free module K.

Theorem 2. For each commutative ring K transformations Pp + , and Lp+ , of K"
form the symmetric bipartite dynamical system SBp(K) of large girth with ¢ = 1/2,
such that ¢’ = —t, t € K and nonidentical transformation of the kind Fp, 4, ¢,,..4;,n OF
Fp, iyt 1), Where (t1,t2,....1;) € K is a cubical map.

3.2 Explicit construction of families of quadratic polynomials

For the plaintext, let us take the point defined as above, but with the fixed first

coordinate:
(p) = (Clapl,l7P1,27p2,17p2,27p/2,27p2,37 oo ups,sapls}s7ps,8+17p8+1,s)7
then consequently, for each element of the password t1, s, ..., let us do the follow-
ing steps:
(1) The coordinates Cl,le,pl)g,p2’1,p272,p/2’2,p213, ...,Ds,s are determined the

operator Pp ¢, or Lp ,, according to the following "rule":
(D) — 1O = Po () — 0)® = Ly a([10) — ... —
(O = Ppyn((p)=Y) — (0 = Lp g, o([Y)
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(2) The last coordinate with "primes", i.e., for s = [n + 2/4], using a, = a,(u) =
T

Z(uiiu;_iﬂ-_i — Ui i1 Up—ir—i—1) = 0, we get:
i=0
5—2
Ve =300 (il oy = liivals—is—im1) + ls—1,s—1l11 — ls—1,6l1 + Lss OF
s—2
Py = ZE:O (piz‘plsfi,sfi — Diit1Ds—i,s—im1) T Ps—1,s—1P11 — Ps,s—1P1 + Dsss
respectively.
(3) The last two coordinates ps s+1,Ps+1,s are calculated using the operator Pp ¢
or Lp i n-

Since we have fixed the first coordinate, the operators Pp;, and Lp ;, of K" make
the coordinates cl7p171,pl,g,pm,pg,g,pé,g,ng, ...,Ds,s linear maps. The coordinates
I, and pl,, which are quadratic maps, are made invisible. The last two coordinates
Ds,s+1 and pgi1,s are also quadratic.

4 Public key cryptography and key exchange protocol

We may assume that g is a private key encryption map corresponding to the numer-
ical string (1, 2, ..., xs) (the key). It is clear that the inverse map corresponds to the
reverse string (s, Ts—1,...,T1).

We implement the public key encryption and the symbolic version of the Diffie-
Hellman key exchange corresponding to the quadratic maps fign fo and f1 g, f1 with
the fixed sparse affine transformations f; and fs.

The typical choice of f; is a linear transformation x1 — x1 +roxo+- - - +7,2,, where
the parameters r; are taken consecutively from the infinite pseudorandom sequences
of the regular elements r;,i =2.3,....

Public key and key exchange algorithms are implemented on the level of symbolic
computations while decryption fo g, f1 ' will be done by numerical algorithm A =
A(f1, f2) with the key space (x1,xa, ..., zs) of variable dimension s. Obviously we can
use A independently as the symmetric private key algorithm.

Notice, that in the case of fo = f1 ' and the periodic password obtained via repe-
tition of the word (a,b, a1, g, ..., a2s), where —ass + a and —ass + b are the regular
elements of the ring K, the security of public rule and related stream cipher is con-
nected with the studies of discrete logarithm problem in the Cremona group (the base is
f19f1—1, where g is the encryption map corresponding to string (a, b, aq, aa, . .., qay)).

To use these results in the public key cryptography over K = F,, let us combine the
quadratic polynomial transformations N; (given in 3.2) with two affine transformation
Ty and Ts. Alice can use 17 N;T5 for the construction of the following public map of

y=(F(x1,...;2n)y. .., Fp(x1,...,2p))

Fi(x1,...,x,) are the polynomials of n variables written as the sums of monomials
of the kind z" 27> with the coefficients from K = F, where iy,ip € 1,2,...,n and
my,mo are positive integers such that mq + mo < 2. As mentioned before, the poly-

nomial equations y; = F;(z1,22,...,2,), ¢ = 1,2...n, which are made public, are of
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degree 2. Hence the process of an encryption and a decryption can be done in the
polynomial time O(n?). But the cryptoanalyst Cezar, having only a formula for y, has
a very hard task to solve the system of n equations of n variables of degree 2. It can be
solved in the exponential time 0(2”2) by the general algorithm based on the Grobner
basis method. Anyway the studies of specific features of our polynomials could lead to
effective cryptanalysis. This is an open problem for specialists.

We consider the Diffie-Hellman algorithm for Sg» for the key exchange in the case of
group. Let ¢g* € Sqn» be the new public rule obtained via k iterations of g. In general,
the algorithm is following. The correspondents Alice and Bob establish g € S;» via the
open communication channel, choose positive integers n4 and npg, respectively, and
exchange the public rules hy = ¢4 and hp = ¢g"? via the open channel. Finally, they
compute common transformation 7" as hg"* and h4"?, respectively.

The order of g in the symbolic Diffie-Hellman algorithm must be "sufficiently large"
and the number n4 (or np) can not be easily computable as functions from degrees
for g and h4. The map g which sends z; into x;* for each i obviously is a bad choice
of the base for the discrete logarithm problem. In this case n 4 is just a ratio of degh 4
and degg.

To avoid such trouble we can look at the family of subgroups G, of Sgn, n = oo
such that the maximal degree of its elements equals ¢, where ¢ is a small independent
constant (groups of degree ¢ or groups of stable degree).

Let us discuss the asymmetry of our modified Diffie-Hellman algorithms of the key
exchange in detail. The correspondents Alice and Bob have different information for
making computation. Alice chooses dimension n, element g,, as in the above theorem,
element h € @, and affine transformation 7 € AGL,(K). So she obtains the base
b= 7"'h~lg,hr and sends it in the form of the standard polynomial map to Bob.

Our groups @, are defined by the set of their generators and Alice can compute
the words h~'g,h, b and its powers very fast. So Alice chooses rather a large number
na computes cq4 = b"* and sends it to Bob. On his turn Bob chooses his own key
np and computes cg = b"5. He and Alice get the collision map ¢ as c4™? and cg"4,
respectively.

Notice that the position of adversary is similar to Bob’s position. He (or she) needs
to solve one of the equations b* = cp or b* = c4. The algorithm is implemented in the
cases of finite fields and rings Z,, for the family of groups @Q,,.
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