
Annales UMCS Informatica AI XII, 4 (2012) 11–22

DOI: 10.2478/v10065-012-0018-y

Hardened Bloom Filters, with an Application to

Unobservability

Nicolas Bernard1∗, Franck Leprévost1†

1LACS, University of Luxembourg

162 a, Avenue de la Faïencerie, L-1511 Luxembourg

Abstract – Classical Bloom filters may be used to elegantly check if an element e belongs to a set

S, and, if not, to add e to S. They do not store any data and only provide boolean answers regarding

the membership of a given element in the set, with some probability of false positive answers. Bloom

filters are often used in caching system to check that some requested data actually exist before doing

a costly lookup to retrieve them. However, security issues may arise for some other applications where

an active attacker is able to inject data crafted to degrade the filters’ algorithmic properties, resulting

for instance in a Denial of Service (DoS) situation. This leads us to the concept of hardened Bloom

filters, combining classical Bloom filters with cryptographic hash functions and secret nonces. We

show how this approach is successfully used in the TrueNyms unobservability system and protects it

against replay attacks.

1 Introduction

Many applications in computer science depend on the result of the following problem:

check if an element e belongs to a set S, and, if it does not, add e to S. Depending on

the application we have in mind, the "match" or "no match" answer will usually lead

to additional processing, like for instance in the following two examples:

(1) Filtering duplicated packets on a network connection: On a network connec-

tion, it can happen that a packet is duplicated. The destination host then

receives it twice, so does the application. This is for instance the case on a

UDP connection.

∗Nicolas.Bernard@uni.lu
†Franck.Leprevost@uni.lu

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 11/01/2026 19:03:37

UM
CS

12 Hardened Bloom Filters, with an Application to...

(2) Counting the number of different elements in a collection: If they are not in

this set, a counter is increased and the element is added to the set.

Bloom filters [1] address these problems in an elegant manner. A Bloom filter is

a probabilistic data structure that allows to represent a finite set S without storing

the actual elements of the set S. Among their main properties, Bloom filters have

small footprints, a fast lookup time, allow to add elements quickly to the represented

set S, and the addition of an element cannot fail due to the data structure being

“full”. Bloom filters do not store any data and can only provide boolean answers on

the membership of a given element in the set, with some probability of false positive

answers. They are often used in caching system to check that some requested data

actually exist before doing a costly lookup to retrieve them.

In the situation of the example (1) above, a Bloom filter at the receiving end could

be used to drop the duplicated packets: packets that do not match are processed

(i.e., used by the application) and added to the set, while packets that do match are

considered as duplicated and discarded.

In the situation of example (2), each element of the collection is matched against

a Bloom filter representing an “already accounted” set. While the result is only

of probabilistic nature, its complexity is O(m) whereas the complexity of a classi-

cal algorithm remains O(m logm), where m is the number of elements of the collection.

This being said, security issues may be raised for many applications, leading e.g. to

Denial of Service (DoS) attacks. The purpose of this article is to provide a solution

to these issues by introducing hardened Bloom filters. Moreover, we show their use in

the seminal example of the TrueNyms protocol [2], which raised our interest in Bloom

filters and motivated the present contribution.

This article is organized as follows: in section 2, we briefly explain the underlying

concept of a classical Bloom filter. In section 3, we describe the security issues that an

external malicious party may exploit, leading to the construction of hardened Bloom

filters. In section 4, we briefly describe the TrueNyms unobservability system, and

describe how to efficiently use hardened Bloom filters to prevent replay attacks on this

system. We conclude this article with some further ideas for the enhancements of our

approach, which we plan to develop in due time.

2 Classical Bloom filters

A Bloom filter (in the classical understanding as defined in [1]) is a probabilistic

data structure representing a finite set S. It consists of a bit array A of size 2n (in

practice n is small, say n < 25), and k distinct hash functions (Hj)1≤j≤k such that

Hj(data) = ij ∈ [0, 2n − 1]. (1)

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 11/01/2026 19:03:37

UM
CS

Nicolas Bernard, Franck Leprévost 13

In other words, ij is an index of A, depending on the data considered. Moreover,

k is also small: its chosen value — in a first approach — depends on the allowed

probabilistic "false-positive" occurrences according to formula 2 below. The discussion

about the (lack of) requirements on hash functions in the context of classical Bloom

filters is addressed in part 2.2.

2.1 Construction of S and A

Initially, S = ∅ and all the bit values of A are equal to 0. An element e is added to S by

setting to 1 all the positions of the array A indexed by the hash values i1 = H1(e), i2 =

H2(e), . . . , ik = Hk(e):

∀j ∈ [1, k], A[Hj(e)] ← 1.

The test to determine if an element e is already in S is performed by generating the

indices for this element. An element e is then probably in S if, and only if:

∀j ∈ [1, k], A [Hj(e)] = 1.

The probability in the previous sentence applies only to the "if" part. Indeed, there

can be values i, j, e, e′ s.t.

Hi(e) = Hj(e
′).

In other words, an index in the array A could be “part of” multiple elements of S. As

a consequence, there is no way to remove elements from S and, once set to 1, a value

A[i] is never reset to 0. It implies in particular that, once added, an element belonging

to S is always found if matched against the filter.

Now, with some probability, the filter can represent an element e as belonging to S

although it is not the case: it may indeed happen that all the indices corresponding to

e are equal to 1, while e �∈ S. Such a “false-positive” occurs with a probability:
(

1−

(

1−
1

2n

)km
)k

≈
(

1− e
−km

2n

)k

, (2)

where m is the number of elements in S.

2.2 Non-cryptographic hash functions

A hash function as used in the context of classical Bloom filters a priori differs

strongly from a hash function used in the context of cryptology. It is a function1:

H : N −→ [0, 2n − 1]

with good statistical distribution properties for given “normal data”, as described for

instance in section 6.4 of [3]. In particular, these hash functions usually lack the

1We consider here any finite word on any finite alphabet as mappable to an element of N, and

that distinct words lead to distinct elements of N.

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 11/01/2026 19:03:37

UM
CS

14 Hardened Bloom Filters, with an Application to...

compression property (see [4, section 9.2.1]) that is a mandatory and important part

of a cryptographic hash function.

Such a hash function can be very simple, and usually it is in order to be fast. For

instance, it may consist in the modular division by some prime, chosen according to

the needed size of the image. In fact, since the hash function does not need to consider

all the data given but only a suitable part to obtain a correct distribution, we can even

construct hash functions with complexity in O(1).

Consequences are multiple, but here we will only note the three following :

(1) Recall that we need k distinct hash functions for the classical Bloom filters.

We can create many different functions with similar properties by changing a

parameter in one fixed scheme. For instance, in a scheme based on modular

division, the choice of k distinct appropriate primes leads to k distinct hash

functions.

(2) It is possible to find preimages : it means that given an i, it is possible to find

Dx, Dy, · · · such that H(Dx) = H(Dy) = · · · = i. Indeed, many simple hash

functions can be easily inverted. Anyway, given the usual size of the image

set, it would be easy to find such values by brute-force.

(3) It is usually even possible, given a few such hash functions H1, · · · , Hj and

corresponding indices i1, · · · , ij , to find a common preimage D such that

H1(D) = i1, · · · , Hj(D) = ij . (3)

3 Security issues and Hardened Bloom filters

As mentioned in the introduction (section 1), security issues may be raised in some

applications. For instance, assume the elements to be matched can be tampered by

an external malicious party, say Mallory. Recall then that the probability given in

equation 2 applies to “ordinary” elements. Since the hash functions Hk are a priori

non-cryptographic ones, Mallory can craft special elements that will fill A with bits set

to 1 much faster than random data would2. Of course, once all the bits of the array A

are equal to 1, each element tried against the filter will match, which results in a denial

of service (DoS) attack in the cases given beforehand: all the elements are considered

as already in the set, even when they are not. So, Bloom filters must be hardened to

prevent such attacks if Mallory controls the incoming data.

If an attacker can inject as many elements he wants to, the battle is lost because

even if he is restricted to the probability given by equation 2, with m growing, the

probability will converge to 1. However, such a case is rare, and most of the time the

attacker will find himself unable to add more than a fixed number of elements per time

unit. Here, it is possible to fight back, and design appropriate countermeasures.

2The irony being that, while collisions are usually a sign of weakness in cryptographic hash

functions, here Mallory has to find non-colliding elements in order to set to 1 all the bits of the array

A as fast as possible.

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 11/01/2026 19:03:37

UM
CS

Nicolas Bernard, Franck Leprévost 15

3.1 Protection against index selection attacks

To prevent Mallory from just deciding upon a set of indices and creating suitable

data to send, the first idea is to use Bloom filters where the k hash functions have some

cryptographic properties.

Notably, it must be hard — no faster way than brute force — to find preimages,

to insure that the attacker will not be able in practice to find a common preimage as

defined in equation 3. With such hash functions, it would be far harder for Mallory to

find non-colliding packets than simply deciding which bits in the array A he wants to

set and generating the corresponding data.

The natural choice for a hash function with such cryptographic properties, is to take

a cryptographic hash function Hc [4, page 323]. Note however that the properties of

a cryptographic hash function are a superset of what is actually needed: we comment

on these aspects in section 5.

3.2 k cryptographic hash functions ?

The first difficulty is to find k such functions. As we have seen in section 2.2, it is

easy to have many non-cryptographic hash functions. Unfortunately, even for a small

relevant k, we cannot find k different standard cryptographic hash functions. The list

of such hash functions mainly consist of md5, sha-1, the sha-2 and ripemd families

[4, 5], and this list can hardly be extended much further.

Nonetheless, there are multiple ways to solve this issue :

(1) Conceptually, the easiest way is probably to add the index of the function

before the data. In other words, given one cryptographic hash function HC ,

and using the | symbol for concatenation, we define the k hash functions as

Hi(data) := Hc (i|data) , 1 ≤ i ≤ k.

Some variants of this method can be imagined. For instance, the index could

be used in the initialization vector of the compression function of the hash

function. However this proposal only makes the implementation harder as

specifying this vector is usually not possible through the API of the crypto-

graphic libraries providing such functions.

(2) One can also think of using the iterated application of the cryptographic hash

function Hc to produce the (Hi)1≤i≤k. More precisely, the k hash functions

are defined as

Hi(data) := (Hc)
i
(data), 1 ≤ i ≤ k,

with

(Hc)
i
(data) =

{

Hc(data) if i = 1,

Hc
(

(Hc)
i−1

(data)
)

if 2 ≤ i ≤ k.

(3) Another way, is to notice that the fingerprint returned by a cryptographic

hash function is a lot longer than an index for the bit array of the Bloom

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 11/01/2026 19:03:37

UM
CS

16 Hardened Bloom Filters, with an Application to...

filter. Indeed, the shortest fingerprints are at least 128 bits long, while it is

unusual for an index to be more than 25 bits long, as noted in section 2. The

idea then would be to see the fingerprint provided by a cryptographic hash

function as the concatenation of l indices :

Hc(data) = i1|i2|i3| · · · |il|r,

where r is an unused “remainder” if the size of the fingerprint is not a multiple

of the size of an index, and ij are the indices of equation 1. Of course, it may

happen that l < k, then this scheme would need to be combined with one of

the previous two to generate the k required indices. However, as there are

standard hash functions with fingerprints size up to 512 bits at least, it should

be possible to use it alone in most cases.

(4) Another possibility that we will not detail here would be to construct custom

hash functions using block ciphers [4, section 9.4.1].

Security-wise, there is no evidence that one of the previous schemes has some obvious

advantage over the others. Let us then compare them on their speed. The algorithmic

complexity of a cryptographic hash function is at least in O(s), where s is the size

of the data to be hashed. To simplify, assume that the algorithm complexity of the

cryptographic hash function is indeed s, the complexity of the different schemes would

then be in :

(1) ks for the first one, as the Hc function is called k times on data of size s+ ε

(ε being the size of the index added before the actual data).

(2) s + (k − 1)f for the second one, where f is the size of a fingerprint: Hc is

called once on data of size s, then k − 1 times on the fingerprint of size f

generated at the previous step. The second scheme is hence faster than the

first one if the data size is large.

(3) The third one needs only one call to the cryptographic hash function if l ≥ k.

If l < k the exact complexity depends on the combination with one of the

other schemes, but will be reduced compared to it anyway.

The third scheme then seems to be the best choice, since it is the fastest one. It must

be noted however that a cryptographic hash function is anyway much slower than a

non-cryptographic one. To take an example, the number of operations to hash data

of size s can be as low as 1 for a non-cryptographic hash function as described in 2.2,

while it would be of the order of 160s for a typical cryptographic hash function like

Ripemd-160 [6].

3.3 Protection against offline attacks

Let us recall that the hash functions considered here give a value that is an index

for the array A, i.e. a value belonging to [0, 2n], with n < 25, and hence preimages

can be found by brute force. Moreover, because Bloom filters are deterministic (and

the different schemes presented in 3.2 do not change this), the same input will fill two

filters in the same way. Mallory can then perform the following offline DoS attack:

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 11/01/2026 19:03:37

UM
CS

Nicolas Bernard, Franck Leprévost 17

Brute force the hash functions to create a set of elements that would fill the Bloom

filter faster than “normal” data would. Even if he is not anymore able to select indices

and craft data to set them specifically, he can still generate a lot of data packets and

send the group of them that sets the greatest number of bits in the array A. While

such elements would have some collisions on indices, they would still fill the filter a lot

faster than the statistical probability predicts.

Let us summarize the situation: to insure the protection against index selection

attacks (seen in part 3.1), we rely on Bloom filters using cryptographic hash functions.

Now, to furthermore insure the protection against an offline attack as described above,

we add the utilization of secret nonces. A nonce is a random value, which in our context

is generated at the instantiation of a Bloom filter and is then used as a key so that the

cryptographic hash functions are in fact replaced by MACs (or keyed hash functions,

see [4, page 325]). Instead of giving all details, we provide here the conceptual idea,

which amounts to specializing Hc for each Bloom filter F in something like

Hc,F(data) := Hc(nF|data), (4)

where nF is the nonce used for filter F.

With such a scheme, Mallory is blinded: he is not able to know the effect of an

element and hence cannot craft special elements anymore. As a consequence, an

active DoS attack by Mallory against Bloom filters hardened this way does not work,

provided that Mallory is only able to add a limited number of elements per second.

The main drawback is that it is not possible anymore to take the union of two sets

by using a bit-wise OR operation on the arrays of the corresponding bloom filters

unless they are using the same nonce. For most applications, this however should not

be a significant issue.

We define here a hardened Bloom filters as a classical Bloom filter using

cryptographically-enhanced hash functions together with a secret nonce, address-

ing index-selection attacks as well as offline attacks.

4 Hardened Bloom filters and TrueNyms

We now describe how such hardened Bloom filters are used in the TrueNyms unob-

servability system [7, 8, 2] as a protection against some forms of active traffic analysis.

Let us first recall what TrueNyms3 is.

3We partially rely on [8] for the wording of some paragraphs of subsections 4.1 and 4.2, as well

as for the figures 1 and 2.

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 11/01/2026 19:03:37

UM
CS

18 Hardened Bloom Filters, with an Application to...

4.1 The TrueNyms unobservability system

The TrueNyms system allows Alice and Bob to communicate over an IP network

without any observer knowing it. More precisely, when parties are using TrueNyms for

their communications, an observer, as powerful as he may be, is unable to know who

they are communicating with. He is unable to know when a communication occurs.

He is even unable to know if a communication occurs at all.

This TrueNyms system is a peer-to-peer overlay network based on Onion-Routing [9,

10], to which it adds protection against all forms of traffic analysis, including replay

attacks. Its performance is experimentally validated and is appropriate for most uses

(e.g. Web browsing and other HTTP-based protocols like RSS, Instant Messaging, file

transfers, audio and video streaming, remote shell, . . .) but the usability of applications

requiring a very low end-to-end latency (like for instance telephony over IP) may be

degraded.

Briefly, Onion-Routing transmits data through nested encrypted tunnels established

through multiple relays R1, R2, etc. (see Figure 1 — in the following, a node denotes

either a relay or Alice or Bob). These relays accept to take part in an anonymity

system, but are not supposed trusted. Indeed, some of them can cooperate with a

passive observer Eve or with an active observer Mallory. Relays see only enciphered

traffic and know only the previous and next nodes on the route. They do not know if

those nodes are other relays or end-points.

Fig. 1. In Onion-Routing, to communicate with Bob, Alice creates a set of

nested encrypted tunnels. For every packet, each relay removes the outer-

most encryption layer (hence the name of this scheme).

To clarify some terminology used throughout this section, an encrypted tunnel between

Alice and one of the nodes is called a connection. Then, a set of nested connections

between Alice and Bob is called a route. Despite being created by Alice, those routes are

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 11/01/2026 19:03:37

UM
CS

Nicolas Bernard, Franck Leprévost 19

not related to IP source routing or other IP-level routing. Standard IP routing is still

used between successive nodes if these nodes are on an IP network as we consider here.

At last, in TrueNyms, a communication is a superset of one or more routes between

Alice and Bob that are used to transmit data between them. A communication can

use multiple routes simultaneously and / or sequentially.

4.2 Replay attacks

An issue with standard cryptography modes when used in Onion-Routing is that they

allow an active replay attack4. Let us examine the situation at a relay at a given time:

for instance, let us assume that this specific relay is a part of three routes, as depicted

in Figure 2.

ORSUAT

ZAFPFL

ECZAFV

ORWCMX

ABCDEF

XNSXAX

3NTUBM

LAMPFB

CLOCRW

VOYUAV

4NBXVE

XLDTFH

ETEOPG

QXBGFA

DM3XRE

TUZLFB

TTPAXO

CFBAQL

AUTFYF

NAELF2

7TEXIF

WXOVGR

OATGBX

FWULFO

A

B

C 3

2

1

QXBGFA

ABCDEF

XNSXAX

LAMPFB

XNSXAX

ETEOPG

QXBGFA

TUZLFB

ORSUAT

ZAFPFL

ECZAFV

ORWCMX

CLOCRW

VOYUAV

4NBXVE

XLDTFH

TTPAXO

CFBAQL

AUTFYF

NAELF2

7TEXIF

WXOVGR

OATGBX

FWULFO

A

B

C 3

2

1

Fig. 2. Cryptography hides connection bindings to a passive observer (left),

but not to an active observer able to inject duplicate packets (right).

On the left of Figure 2, the observer sees three distinct incoming connections (A, B, C),

while there is also three outgoing connections (1, 2, 3). To make the relaying useless,

the observer must discover the relationship between the incoming and the outgoing

connections, or at least he must discover the outgoing connection corresponding to an

incoming one he is interested in.

As an encryption layer is removed on each connection, he cannot discover this by a

casual glance at the content of the packets. Moreover, in TrueNyms, the packet size

and rate are normalized, and care is taken to prevent information leaks when a route

is established or closed (as described in [7, 8, 2]).

Those standard traffic analysis methods are hence closed to an attacker.

However, as cryptography is deterministic, if nothing is done, a given packet entered

twice through a same incoming connection would be output twice — in its form with

an encryption layer removed — on the corresponding outgoing connection. So Mallory

takes a packet and duplicates it, say on connection A, which leads to the right side

of Figure 2. He then looks for two identical packets on the output, and finds them

4This is different of the replay attacks well known in cryptography, where an attacker can play

part of a protocol back from a recording, and that are usually prevented by the use of nonces or

timestamps.

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 11/01/2026 19:03:37

UM
CS

20 Hardened Bloom Filters, with an Application to...

on the connection 3, so he learns that connection A and connection 3 are part of

the same route. Obviously, depending on the interest of Mallory, he can perform a

similar attack on the next relay having the connection 3 as an incoming connection,

and then see where it leads ultimately. Or he can perform the same attack on the other

incoming connections B and C, and figure out exactly which outgoing connection 1 or

2 corresponds to them.

The obvious way to prevent an external attacker to inject packets would be to use

node-to-node authentication on a route, but in this case it would not be sufficient

since, even if we assume that the replay of an authenticated packet is not possible, the

possibility for Mallory to operate a node must also be accounted for. This means there

is no way to actually prevent packet injection by an active observer, and so the system

has to be designed in a way that makes such injection useless.

4.3 Using hardened Bloom filters to prevent replay attacks

Recall that packets between two successive nodes on a route can be replayed by

Mallory, and hence will be output on the corresponding outgoing connection to the

downstream relay.

In the TrueNyms implementation, to prevent such replay attacks, a relay “remem-

bers” all the packets of a transmission and compares each incoming packet on the same

connection to them. If it does not match, the packet is forwarded; if it does match, it

is dropped (and a dummy packet is forwarded).

Of course this approach requires a very fast way to compare a new packet to the

previous ones, hence the need for Bloom filters.

The situation is then similar to the context described in the example (1) of section 1:

an accepted packet is added to the filter if it “was not” already in it. In TrueNyms,

as the traffic is shaped, Mallory cannot simply flood the filter as the addition to the

filter is only done for transmitted packets, and packets outside the shaping envelope

are simply dropped.

In order to protect our unobservability system against the security issues raised in

section 3, TrueNyms relies on hardened Bloom filters.

Notice that, as false positives can occur, legitimate packets may be dropped. This

may slightly alter the performance of the system, but is not otherwise an issue as

TrueNyms provides end-to-end reliability if needed: the packet will then be resent with

another aspect. To ensure this different aspect, unacknowledged packets are buffered

unencrypted. If it is necessary to retransmit a packet, a nonce (unrelated to the nonces

used in the hardened Bloom filters in part 3.3) it includes is changed before the packet

is re-encrypted. As the cipher is used in bi-IGE mode (see below), the new encrypted

packet will have no similarities with the old one.

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 11/01/2026 19:03:37

UM
CS

Nicolas Bernard, Franck Leprévost 21

Nonetheless, a long term connection would start to swamp the hardened Bloom Filter

after some time, and packets would start to be lost more and more. In TrueNyms, this

is not an issue due to two distinct features :

(1) Even if the communication is long-term, this is not the case of the routes it

uses. The lifetime of a route is chosen at random and is fixed before it is

used ;

(2) Routes are re-keyed from time to time. It means the encryption keys used

for the connections are changed. As the same packet entering twice but going

through the encryption layer with different keys would give different (and a

priori unmatchable without knowing the keys) outputs, the hardened Bloom

filters can be replaced by new ones during the key changes.

Of course, it only prevents Mallory from replaying identical packets. If let unhin-

dered, he will replay slightly different packets and his attack would be successful because

after adding or removing an encryption layer with a standard block cipher mode, the

original and replayed packets will have similarities. For the use of hardened Bloom

filters to be effective, this attack must be prevented too, for instance by employing a

special mode like bi-IGE (which is a bi-directional application of the Infinite Garble

Extension mode — Campbell, 1977, [11]) as it is done in TrueNyms.

5 Conclusions and further work

In this paper, after recalling the functioning and the main properties of classical

Bloom filters, we considered the situation where a malicious party may develop index-

selection attacks or offline attacks against some applications, leading e.g. to Denial

of Service situations. We then designed hardened Bloom filters able to withstand

such attacks, combining classical Bloom filters together with cryptographic hash

functions and secret nonces. Although these hardened Bloom filters are slower than

classical Bloom filters, mostly due to the use of cryptographic hash functions over

non-cryptographic ones, we described how they are concretely successfully used in

the TrueNyms unobservability system to defend it against active traffic analysis attacks.

Should the need arise, performance can probably be improved by further work on

the hash functions. Our proposed hardened Bloom filters relies notably on crypto-

graphic hash functions. However, the requirements are probably weaker: for instance,

while compression and preimage resistance appear to be needed, it is not obvious

that second-preimage and collision-resistance are necessary as well. It may hence be

possible to construct custom hash functions with only the mandatory properties, that

would be faster than the usual cryptographic hash functions. We intend to study these

possibilities in a future work.

Finally, multiple variants of Bloom filters have been proposed (Bloomier filters, etc.)

over the years, some faster, some using less space, some allowing to remove elements,

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 11/01/2026 19:03:37

UM
CS

22 Hardened Bloom Filters, with an Application to...

etc. In a future work, we also intend to study the possibility to similarly harden some

of these numerous existing variants of Bloom filters.

Acknowledgements

The FNR/04/01/05/TeSeGrAd grant partially supported this research.

References

[1] Bloom B. H., Space/time trade-offs in hash coding with allowable errors, Communications of the

ACM 13 (7) (1970): 422.

[2] Bernard N., Leprévost F., Unobservability of low-latency communications: the TrueNyms proto-

col, work in progress.

[3] Knuth D. E., Sorting and Searching,The Art of Computer Programming 3 (1998).

[4] Menezes A. J., van Oorschot P. C., Vanstone S. A., Handbook of Applied Cryptography, Discrete

Mathematics and its Applications, CRC Press (1997).

[5] Anderson R., Security Engineering: A Guide to Building Dependable Distributed Systems, Wiley

(2001).

[6] Preneel B., Dobbertin H., Bosselaers A., The Cryptographic Hash Function RIPEMD-160, Cryp-

toBytes 3 (2) (1997): 9.

[7] Bernard N., Non-observabilité des communications à faible latence, Université du Luxembourg,

Université de Grenoble 1 – Joseph Fourier (2008).

[8] Bernard N., Leprévost F., Beyond TOR: The TrueNyms Protocol, Security and Intelligent Infor-

mation Systems 7053 (2012): 68.

[9] Goldschlag D. M., Reed M. G., Syverson P. F., Hiding Routing Information, Proceedings of

Information Hiding: First International Workshop, Springer-Verlag, LNCS 1174 (1996): 137.

[10] Reed M. G., Syverson P. F., Goldschlag D. M., Anonymous connections and Onion Routing,

IEEE Journal on Selected Areas in Communications 16(4) (1998): 482.

[11] Knudsen L., Block Chaining Modes of Operation, Department of Informatics, University of Bergen

(2000); http://www.ii.uib.no/publikasjoner/texrap/ps/2000-207.ps

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 11/01/2026 19:03:37

UM
CS

Pow
er

ed
 b

y T
CPDF (w

ww.tc
pd

f.o
rg

)

http://www.tcpdf.org

