
Annales UMCS Informatica AI XII, 4 (2012) 69–81

DOI: 10.2478/v10065-012-0032-0

On the modelling of Kerberos protocol in the Quality of

Protection Modelling Language (QoP-ML)

Bogdan Księżopolski1,2∗, Damian Rusinek1†, Adam Wierzbicki2‡

1Institute of Computer Science, Maria Curie-Sklodowska University

pl. M. Curie-Sklodowskiej 5, 20-031 Lublin, Poland
2Polish-Japanese Institute of Information Technology

Koszykowa 86, 02-008 Warsaw, Poland

Abstract – The security modelling of IT systems is a very complicated task. One of the issues

which must be analysed is the performance of IT systems. In many cases the guaranteed security

level is too high in relation to the real threats. The overestimation of security measures can decrease

system performance. The paper presents the analysis of Kerberos cryptographic protocol in terms of

quality of protection performed by Quality of Protection Modelling Language (QoP-ML). The analysis

concerns the availability attribute. In the article the Kerberos protocol was modelled and the QoP

analysis of two selected versions was performed.

1 Introduction

During modelling the IT security of the organization one has to consider system per-

formance and financial costs. System security is guaranteed by using different types of

security mechanisms [1]. Security analysts must decide which security measures should

be used for the system protection and whether the selection is sufficient. The usage

of strongest security mechanisms can lead to the overestimation of security measures

which causes an unreasonable increase in the system load [2, 3]. A better solution is to

adjust the security measures to the required level of protection. Such an approach can

be achieved by means of the Quality of Protection systems where the security measures

are evaluated according to their influence on the system security.

∗bogdan.ksiezopolski@umcs.lublin.pl
†damian.rusinek@gmail.com
‡adamw@pjwstk.edu.pl

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 12/01/2026 03:42:43

UM
CS



70 On the modelling of Kerberos protocol in the Quality of...

1.1 Related Work

In the literature the Quality of Protection (QoP) models are described in the fol-

lowing articles [4, 5, 6, 7, 8, 9, 10, 11]. S. Lindskog and E. Jonsson attempted to

extend the security layers in a few Quality of Service (QoS) architectures [6]. Unfor-

tunately, the descriptions of the methods are limited to the confidentiality of the data

and based on different configurations of the cryptographic modules. C. S. Ong et al.

in [8] present the QoP mechanisms, which define security levels depending on security

parameters. These parameters are as follows: key length, block length and contents

of an encrypted block of data. P. Schneck and K. Schwan [10] proposed an adapt-

able protocol concentrating on the authentication. By means of this protocol, one can

change the version of the authentication protocol which finally changes the parameters

of the asymmetric and symmetric ciphers. Y. Sun and A .Kumar [11] created QoP

models based on the vulnerability analysis which is represented by the attack trees.

The leaves of the trees are described by means of the special metrics of security. These

metrics are used for describing individual characteristics of the attack. In the arti-

cle [4] B. Księżopolski and Z. Kotulski introduced mechanisms for adaptable security

which can be used for all security services. In this model the quality of protection

depends on the risk level of the analysed processes. A. Luo et al [7] present the quality

of protection analysis for the IP multimedia systems (IMS). This approach includes

the IMS performance evaluation using Queuing Networks and Stochastic Petri Nets.

E. LeMay et al [5] create the adversary-driven, state-based system security evaluation,

the method which quantitatively evaluates the strength of system’s security. In the

article [9] D. C. Petriu et al present the performance analysis of security aspects in the

UML models. This approach takes as an input the UML model of the system designed

by the UMLsec extension [12] of the UML modelling language. This UML model is

annotated with the standard UML Profile for schedualability, performance and time

and then was analysed for performance. In the article [13] B. Księżopolski introduced

the Quality of Protection Modelling Language (QoP-ML) which provides the modelling

language for making abstraction of cryptographic protocols that put emphasis on the

details concerning quality of protection.

1.2 QoP-ML

The QoP-ML [13] is the Quality of Protection Modelling Language by means of which

one can abstract all operations executed during the flow of cryptographic protocol. The

QoP-ML introduces the multilevel [14] protocol analysis that extends the possibility

of describing all possible states of the cryptographic protocol. Every single operation

defined by the QoP-ML is described by the security metrics which evaluate the impact

of this operation on the overall system security. When the security impact is defined

for all actions executed in the protocol, then one can set the protection level for all

analysed systems. The assumption of the quality of protection analysis based on the

QoP-ML is to be fully automatic, where the analysis time is an important factor. The

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 12/01/2026 03:42:43

UM
CS



Bogdan Księżopolski, Damian Rusinek, Adam Wierzbicki 71

analysis engine of the modelled protocol is the part of the core system. In the paper

[13] the syntax, semantics and algorithms of the QoP-ML are presented.

In the paper we would like to present the case study of the quality of protection

modelling by means of the QoP-ML. For illustration of the QoP analysis process we

chose one of the most popular cryptographic protocols - Kerberos [15].

2 Case Study: Kerberos protocol

In this section we are going to present the case study of QoP modelling of the
Kerberos cryptographic protocol [15]. We are analysing the two versions of the
protocol. In the first one the symmetric key is generated by Trusted Third Party and
in the second one the key is generated by both sides: A and B. The flows of both
version of the protocol are realized in four steps and the schemes are presented in Figs
1 and 2.

Notation for Figs 1 and 2

TTP - Trusted Third Party;

A - side A;

B - side B;

ticketB = (K,A,L)KBTTP
- ticket for the side B;

authenticator1 = (A, TA)K - authenticator 1;

authenticator2 = (A, TA,K′)K - authenticator 2;

K - new generated symmetric key;

L - lifetime of the ticket ticketB ;

TX - timestamp from the local clock of side X;

NX - the nonce of the X.

K′ - subkey of the key K generated by the site A;

K′′ - subkey of the key K generated by the site B.

1. A → TTP : A,B,NA

2. A ← TTP : ticketB , (K,NA, L,B)KATTP

3. A → B : ticketB , authenticator1

4. A ← B : (TA)K

Fig. 1. The protocol flow of the Kerberos (simplified) - version 1

1. A → TTP : A,B,NA

2. A ← TTP : ticketB , (K,NA, L,B)KATTP

3. A → B : ticketB , authenticator2

4. A ← B : (TA,K′′)K

Fig. 2. The protocol flow of the Kerberos (simplified) - version 2

The flows presented in Figs 1 and 2 are the simplified, fifth version of the Ker-

beros protocol. This protocol is fully analysed and described in [15]. In the next

section it is briefly described according to the introduced notation used in Figs 1 and 2.

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 12/01/2026 03:42:43

UM
CS



72 On the modelling of Kerberos protocol in the Quality...

Step 1:

A Client A generates a nonce NA and sends to the TTP the following information:

his identification (A), generated nonce (NA) and the identification of the side B with

which he wants to perform the key exchange process.

Step 2:

The TTP generates a new symmetric key K and defines the lifetime of ticket (ticketB).

After this, the TTP generates the ticket (ticketB). The ticket contains: generated

symmetric key K, identifier of side A (A) and the lifetime of the ticket L. This data is

encrypted with the symmetric key KBTTP shared between TTP and B. Next, the TTP

creates the message addressed to side A containing: the symmetric key K, identifier

of side B (B), the lifetime of the ticket L and the previously received nonce NA and

encrypts it with the symmetric key KATTP shared between TTP and A. Finally, the

TTP sends these two encrypted data to the A.

Step 3:

The side A decrypts the second encrypted data using the key KATTP . After

this it verifies the integrity of the received nonce NA with the one sent in step

1. In the next operation, side A generates one of the messages authenticator1 or

authenticator2 depending on the selected version of the protocol. Both these messages

contain identification of A and the current timestamp TA. In the second version,

A additionally generates its subkey K
′ and includes it in the message. Next the

prepared message is encrypted with the received key K. Finally A sends the received

ticket (ticketB) and the authenticator (authenticator1 or authenticator2) to the side B.

Step 4:

The side B decrypts the received ticket (ticketB) using the shared key KBTTP and

obtains the key K. After this the side B decrypts the authenticator and verifies

the following information: the identifiers A in the ticket and the authenticator, the

timestamp in the authenticator and the ticket lifetime L. If the verification of all

components is positive then, depending on the selected version, the side B either

encrypts only the received timestamp TA (in version 1) or generates its own subkey

K
′′ and encypts both the received timestamp TA and generated key K

′′. In both cases

the encryption is performed using the key K. The encrypted data is sent to the side

A. Next, the side A receives the data and decrypts it with the key K. The decrypted

timestamp TA is used for authentication of the side B.

The QoP analysis process includes the five steps: protocol modelling, security metrics

definition, precess instantiation, QoP-ML processing and QoP evaluation [13]. The

following section describes these steps during modelling of the Kerberos protocol.

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 12/01/2026 03:42:43

UM
CS



Bogdan Księżopolski, Damian Rusinek, Adam Wierzbicki 73

2.1 Protocol modelling

In the first step one has to model all operations required in the Kerberos protocol

[15]. These operations are generally described in the protocol flow scheme (Figs 1 and

2). In the article we present one level analysis where only the cryptographic operation

will be considered. The QoP analysis can refer to different security attributes and each

of them must be proceeded according to the special algorithms. In the article which

introduces QoP-ML [13] the algorithm referring to the availability security attribute

[16] is presented. Thus the Kerberos protocol will be analysed according to this security

attribute.

The protocol modelling step includes the four operations: function defining, equation

defining, channels defining and protocol flow description.

Functions

For modelling of the Kerberos protocol we defined the functions which refer to the

cryptographic operations required in the protocol. These functions are presented

below. In the round bracket the description of these functions is presented.

fun id(); (creating id of a side)

fun skey()[Availability:bitlength, algorithm];(compute symmetric key)

fun nonce()[Availability:bitlength, algorithm];(compute new nounce)

fun lifetime();(compute ticket lifetime)

fun enc(data,key)[Availability:bitlength, algorithm, mode];(encrypt the data)

fun dec(data,key)[Availability:bitlength, algorithm, mode];(decrypt the data)

fun time();(timestamp generating)

fun newstate(state);(state of the protocol)

fun finished(); (finished state of the protocol)

Equations

After defining the functions one can describe the relations between them.

eq dec(enc(data,K),K) = data (symmetric encryption/decryption)

Channels

In the presented example we define two synchronous channels.

channel ch1,ch2(0);

Protocol flow

The last and the most important operation during the modelling process is abstracting

the protocol flow. In the presented case study we analyse two versions of the Kerberos

protocol. In the first one, the exchanged key K is generated by the Trusted Third

Party (TPP ) and used by both sides. In the second version, the key generated by

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 12/01/2026 03:42:43

UM
CS



74 On the modelling of Kerberos protocol in the Quality......

TPP is used to encrypt the messages which include the subkeys K
′ and K

′′ of boths

sides while the exchanged key will be derived from these subkeys.

To analyse it, one does not have to design these two versions separately, but they

can be abstracted in one protocol flow. While defining the protocol instantiation one

can specify the parameters typical of specific versions of Kerberos.

The operations inside the processes are numbered owing to which one can easily

refer to them during the QoP analysis. These operations are numbered independently

(locally) inside every single process.

In the following section the high hierarchy processes will be described in detail.

host A (rr)(*)

{

#K_ATTP=skey()[256,LinuxPRNG];

process A1(ch1,ch2)

{

1.IDA = id();

2.IDB = id();

3.NA = nonce()[256,LinuxPRNG];

4.M1 = (IDA, IDB, NA);

5.out(ch1:M1);

6.in(ch1:TicketB,Y);

7.M4=dec(Y,K_ATTP)[256,AES,CBC];

8.TA=time();

subprocess Av1(*)

{

1.M5=(IDA,TA);

2.K=M4[0];

3.authenticator1=enc(M5,K)[256,AES,CBC];

4.out(ch2:TicketB, authenticator1);

}

subprocess Av2(*)

{

1.KA=skey()[256,LinuxPRNG];

2.M5=(IDA,TA,KA);

3.K=M4[0];

4.authenticator2=enc(M5,K)[256,AES,CBC];

5.out(ch2:TicketB, authenticator2);

}

9.in(ch2:Z);

10.M7=dec(Z,K)[256,AES,CBC];

11.TArec=M7[0];

12.if(TArec==TA){

13.status=newstate(finished());

} else {

14.stop;

}

}

}

Host A

The processes inside the Host A are scheduled according to the round robin (rr)

algorithm where the quantum of time is defined in QoP-ML as the single operation.

All communication channels are accepted by this process (*).

Firstly, the operation, which is executed before the process Host A starts, is defined

(# operator). This is K_ATTP - defining the symmetric key shared by the Hosts A and

TTP.

process A1

Process A1 can communicate with the other processes through the channels ch1 and

ch2. In the first operation the id of side A, which starts the protocol, is created and

is assigned to the variable IDA. Next, Host A creates the id of the side IDB which he

wants to authorise and with whom he wants to exchange the new key. In the third

operation the nonce is generated and assigned to the variable NA. Additionally, the

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 12/01/2026 03:42:43

UM
CS



Bogdan Księżopolski, Damian Rusinek, Adam Wierzbicki 75

qop parameters are defined (according to the defined function description), there is

the bits length - 256 and the algorithm used in the Linux Ubuntu System named -

Linux PRNG. In the next operation the message M1 is created containing the following

data: IDA, IDB, NA. After this, the message M1 is sent through the channel ch1 and

Host A starts to listen on the channel ch1.

When the messages are received on the channel ch1, they are assigned to the variables

TicketB and Y. The variable Y is decrypted using the key K_ATTP and the result is

assigned to variable M4. Next, timestamp TA is created and one of the subprocesses

(Av1 or Av2) is run (depending on the selected version in the process instantiation).

These subprocesses differ in only one operation - the new symmetric subkey generation

(function - skey) which distinguishes the analysed Kerberos protocol versions. As

the output of these subprocesses the message containing TicketB and one type of the

authenticator are created and sent through the channel ch2. In the next operation

the Host A starts to listen on the channel ch2. When a message is received, it is

assigned to the variable Z and decrypted using the key K. The result of this operation

is assigned to the variable M7 and the ingredient containing the timestamp TArec

is compared with the previously sent timestamp TA. When these timestamps are

the same, then the authorization process is finished sucessfully and the state of the

protocol flow is changed into the finished newstate. When the timestamp TArec is

not equal to TA, the protocol is stopped stop.

subprocess Av1

The subprocess Av1 can communicate with other processes through all channels (*).

In the first operation the message M5 is created which contains the created timestamp

TA and identification of side A IDA. After this, the message M5 is encrypted with

the key K received in the message Y. The result of this encryption is assigned to the

variable authenticator1. Next, both the TicketB (received with the message Y) and

authenticator1 are sent through the channel ch2.

subprocess Av2

The subprocess Av2 can communicate with other processes through all channels (*).

This subprocess differs from the subprocess Av1 in one step only. In this process the

symmetric key KA is created and joined to the message M5. As a result, the new au-

thenticator is created authenticator2 and sent with TicketB through the channel ch2.

host TTP (rr)(*)

{

#K_BTTP=skey()[256,LinuxPRNG];

#K_ATTP=skey()[256,LinuxPRNG];

process TTP1(ch1,ch2)

{

1.in(ch1:X);

2.K=skey()[256,LinuxPRNG];

3.L=lifetime();

4.IDA=X[0];

5.M2=(K,IDA,L);

6.TicketB=enc(M2,K_BTTP)[256,AES,CBC];

7.NA=X[2];

8.IDB=X[1];

9.M3=(K,NA,L,IDB);

10.M3E=enc(M3,K_ATTP)[256,AES,CBC];

11.out(ch1:TicketB,M3E);

}

}

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 12/01/2026 03:42:43

UM
CS



76 On the modelling of Kerberos protocol in the...

Host TTP

In this Host the processes are scheduled according to the same algorithm as in Host

A and all communication channels are accepted by this process (*). As in Host A,

firstly the operations executed before Host TTP starts the main process are defined (#

operator). There are: K_BTTP - the secret key shared between B and TTP and K_ATTP -

the secret key shared between A and TTP.

process TPP1

Process TPP1 can communicate with other processes through the channels ch1 and

ch2. At the beginning the process is waiting for incoming message which is assigned to

the variable X. When the message is received the process generates a new symmetric

key and stores it in the variable K. Next the lifetime of ticket is stored in L and identi-

fication of the side that started protocol is retrived from the message X and assigned

to IDA. The process TTP1 can now create message M2 including: the generated key K,

retrived id IDA and lifetime L and encrypt it using the key K_BTTP to obtain TicketB

destined for the side B. In the next four operations the process TTP1 preapres the

returning message for the side A. This message includes: the nonce retrived in message

X, generated key K, lifetime L and identification of side B obtained from message X.

Next the message is encryptrd with the key K_ATTP shared between Host A and Host

TTP and both TicketB and the encrypted message M3E are sent through the channel ch1.

host B (rr)(*)

{

#K_BTTP=skey()[256,LinuxPRNG];

process B1(ch2)

{

1.in(ch2:TicketB,authenticator);

2.M1=dec(TicketB,K_BTTP)[256,AES,CBC];

3.M2=dec(authenticator,K)[256,AES,CBC];

subprocess Bv1(*)

{

1.TA=M2[1];

2.K=M1[0];

3.M6=enc(TA,K)[256,AES,CBC];

4.out(ch2:M6);

}

subprocess Bv2(*)

{

1.TA=M2[1];

2.K=M1[0];

3.KB=skey()[256,LinuxPRNG];

4.M6b=(TA,KB);

5.M6=enc(M6b,K)[256,AES,CBC];

6.out(ch2:M6);

}

}

}

Host B

In Host B processes are sheduled in the same way as in prevoius hosts and all com-

munication channels are accepted by this process (*). It has one previously computed

value stored in the variable K_BTTP. It is the symmetric key shared between Host B

and Host TTP.

process B1

The process B1 can communicate with other processes using the channel ch2. Firstly,

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 12/01/2026 03:42:43

UM
CS



Bogdan Księżopolski, Damian Rusinek, Adam Wierzbicki 77

the process is waiting for two messages (stored in TicketB and authenticator

variables) on the channel ch1. Next, both messages are decrypted. TicketB is

decrypted using the key K_BTTP because it comes from Host TTP and was forwarded

by Host A. The result of decryption is stored in the M1 variable. The second message

authenticator is decrypted with the key K generated by TTP and the result is stored

in the variable M2.

Further, one of the subprocesses (Bv1 or Bv2) is executed depending on the selected

version in the process instantion.

subprocess Bv1

The subprocess Bv1 can communicate with other processes through all channels (*).

Firstly, it obtains the timestamp of side A (TA) and the key generated by TTP (K) from

the retrived messages. Next, the subprocess sends the timestamp TA encrypted with

the key K through the channel ch2. Then the protocol is finished for Host B.

subprocess Bv2

The second version of the protocol flow is similar at the beginning. It also obtains

the timestamp of side A (TA) and the key generated by TTP (K), but later the flow

is different from the previous subprocess. Instead of sending only timestamp TA, the

subprocess Bv2 generates the subkey K” of side B stored in the variable KB. Next, the

subprocess sends both: timestamp TA and generated key KB encrypted with the key K

through the channel ch2. Then the protocol is finished for Host B.

2.2 Security metrics definition

When modelling the protocol, the designer needs to define the security metrics for

all functions connected with each security attribute which he wants to test. In the

presented case study we test the availability of two different flows of Kerberos protocol.

Hence, we need metrics for all functions that may affect the availability. We have

checked the execution times of operations used in the Kerberos protocol that may be

used (ie. nonce/key generation, encryption).

Many security metrics may be obtained from benchmarks present in both, official

hardware specifications and literature [17, 18]. Some of them can be found in the spe-

cialized scientific articles, such as performance characteristics of the S-blocks [19, 20] .

However, some metrics may depend on the hardware on which the protocol is executed

[21]. Therefore, in our case study we have used commonly applied software to compute

metrics so that everyone can very easily compute them on his host. For encrypting and

decrypting we have used openssl program with speed library [22]. For the functions

which generates the nonce and keys we prepared our own software described in [13].

metrics

{

conf(host1)

{

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 12/01/2026 03:42:43

UM
CS



78 On the modelling of Kerberos protocol in the...

CPU = Intel Core i7-3930K 3.20GHz;

CryptoLibrary = openssl 0.9.8o-5ubuntu1.2;

OS = Ubuntu 11.04 64-bit;

}

data(host1)

{

primhead[nr][bit length][algorithm][mode][function][Av:time(mspb)];

primitive[1][256][AES][CBC][enc][0.0000000049];

primitive[2][256][AES][CBC][dec][0.0000000049];

}

data+(host1:1)

{

primhead[nr][bit length][algorithm][function][Av:time(ms)];

primitive[1][256][LinuxPRNG][nonce][0.0025];

primitive[2][256][LinuxPRNG][skey][0.0025];

}

set host A(host1:1);

set host B(host1:1);

set host TTP(host1:1);

}

2.3 Process instantiation

During the process instantiation one can define the versions of the modelled protocol.

In the presented example we set two versions of the Kerberos protocol, the first version

with one key generation and the second one with subkeys generated by both sides (A

and B). In these versions three high hierarchy processes are executed: Host A, Host B

and Host TTP.

In version 1 inside the process Host A the process A1 is executed (function - run)

with the subprocess Av1. Inside the process Host B the process B1 is executed with

the subprocess Bv1. The process Host TTP is run the same way in both cases. The

Kerberos protocol versions can be modelled by defining the subprocess which will be

executed in the specific protocol instantiation.

version 1

{

run host TTP

{

run TTP1(*)

}

run host B

{

run B1(Bv1)

}

run host A

{

run A1(Av1)

}

}

version 2

{

run host TTP

{

run TTP1(*)

}

run host B

{

run B1(Bv2)

}

run host A

{

run A1(Av2)

}

}

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 12/01/2026 03:42:43

UM
CS



The second version of the Kerberos protocol differs from the first one in the key

generation. The key is generated from two subkeys generated by both sides A and B.

This flow was modelled as the subprocesses Av2 and Bv2 in the processes A1 and B1,

respectively.

2.4 QoP-ML processing and QoP evaluation

The final step in the QoP analysis process is QoP-ML processing and QoP evaluation

which can investigate the influences of the security mechanisms for ensuring security

attributes. In the presented case study we focus on the availability of the cryptogra-

phy protocol. The QoP-ML processing of this security attribute should be prepared

according to the algorithms presented in the article [13]. Unfortunately, realization of

this security attribute is a complex task because it refers to configuration of the whole

teleinformatic infrastructure in which the protocol is realized. In the article the QoP

evaluation is focused on one level of security aspect which refers to the cryptographic

algorithm. Based on these algorithms we calculated the total execution time (TTotal) of

the two analysed versions of the Kerberos protocol. For the first version of the protocol

the TTotal = 0.0050004018 s. In the second the TTotal = 0.010000441 s. The execution

time for the first version of the protocol is 50% shorter than in the second version.

3 Conclusions

The aim of this study was to present a new language QoP-ML [13] and show how to

perform an QoP analysis of cryptographic protocols. A full, multi-level cryptographic

protocol analysis is very complex and exceeds the opportunity to be presented in this

article. The study contains two selected versions of the Kerberos protocol and only

cryptographic algorithms were taken into account. The QoP-ML modelling language

allows to analyse protocols in terms of different security attributes, this paper presents

an analysis in terms of availability. Based on the algorithms presented in [13] we

calculate the total protocol runtime for two versions of the Kerberos protocol.

The main feature of QoP-ML is that the cryptographic protocol can be analysed

on different levels of security analysis. Owing to that the QoP analysis can take into

consideration any factors which influence the overall system security. Another main

feature of QoP-ML is that one can define the security metrics of the used operations

in the analysed protocol.

Acknowledgements

Research partially supported by the grant "Reconcile: Robust Online Credibility

Evaluation of Web Content" from Switzerland through the Swiss Contribution to the

enlarged European Union

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 12/01/2026 03:42:43

UM
CS



80 On the modelling of Kerberos protocol in the...

References

[1] ISO/IEC 27002:2005; Information technology - Security techniques - Code of practice for infor-

mation security management (2005).

[2] Ksiezopolski B., Kotulski Z., Szalachowski P., Adaptive approach to network security, Communi-

cations in Computer and Information Science 158 (2009): 233.

[3] Ksiezopolski B., Kotulski Z., Szalachowski P., On QoP method for ensuring availability of the

goal of cryptographic protocols in the real-time systems, European Teletraffic Seminar (2011):

195.

[4] Ksiezopolski B, Kotulski Z., Adaptable security mechanism for the dynamic environments, Com-

puters & Security 26 (2007): 246.

[5] LeMay E., Unkenholz W., Parks D., Adversary-Driven State-Based System Security Evaluation,

In Workshop on Security Metrics - MetriSec (2010) .

[6] Lindskog S., Modeling and Tuning Security from a Quality of Service Perspective. PhD disser-

tation, Department of Computer Science and Engineering, Chalmers University of Technology,

Goteborg, Sweden (2005).

[7] Luo A., Lin Ch., Wang K., Lei L., Liu Ch., Quality of protection analysis and performance

modeling in IP multimedia subsystem. Computers Communications 32 (2009): 1336.

[8] Ong C.S., Nahrstedt K., Yuan W., Quality of protection for mobile applications, In IEEE Inter-

national Conference on Multimedia & Expo (2003): 137.

[9] Petriu D. C., Woodside C. M., Petriu D. B., Xu J., Israr T., Georg G., France R., Bieman J.

M., Houmb S. H., Jürjens J., Performance Analysis of Security Aspects in UML Models, In Sixth

International Workshop on Software and Performance (2007).

[10] Schneck P., Schwan K., Authenticast: An Adaptive Protocol for High-Performance, Secure Net-

work Applications, Technical Report GIT-CC-97-22 (1997).

[11] Sun Y., Kumar A., Quality od Protection(QoP): A quantitative methodology to grade security

services, In 28th confrence on Distributed Computing Systems Workshop (2008): 394.

[12] Jürjens J., Secure System Development with UML, Springer (2007).

[13] Ksiezopolski B., QoP-ML: Quality of Protection modelling language for cryptographic protocols,

Computers & Security 31(4) (2012): 569.

[14] Theoharidou M., Kotzanikolaou P., Gritzalis S., A multi-layer Criticality Assessment methodology

based on interdependencies, Computers & Security 29 (2010): 643.

[15] Neuman C., Ts’o T., Kerberos: An Authentication Service for Computer Networks, IEEE Com-

munications 32 (9) (1994): 33.

[16] ISO/IEC 27001:2005. Information technology – Security techniques – Information security man-

agement systems – Requirements (2005).

[17] Rusinek D., Ksiezopolski B., Influence of CCM, CBC-MAC, CTR and stand-alone encryption on

the quality of transmitted data in the high-performance WSN based on Imote2 Annales UMCS

Informatica AI XI (3) (2011): 117.

[18] Szalachowski P., Ksiezopolski B., Kotulski Z., CMAC, CCM and GCM/GMAC: advanced modes

of operation of symmetric block ciphers in the Wireless Sensor Networks, Information Processing

Letters 110 (2010): 247.

[19] Grocholewska-Czurylo A., Cryptographic properties of modified AES-like S-boxes, Annales

UMCS Informatica AI XI (2) (2011): 37.

[20] Grocholewska-Czurylo A., Chmiel K., Stoklosa J., Involutional block cipher for limited resources,

IEEE Globecom (2008).

[21] Jaquith A., Security Metrics: Replacing Fear, Uncertainty, and Doubt, Addison-Wesley (2007).

[22] Openssl Project: http://www.openssl.org/

Jürjens J., Tools for Secure Systems Development with UML. International Journal on Software

Tools for Technology Transfer 2007; 9:527-544.

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 12/01/2026 03:42:43

UM
CS



Bogdan Księżopolski, Damian Rusinek, Adam Wierzbicki 81

Lambrinoudakis C., Gritzalis S., Dridi F., Pernul G., Security requirements for e-government

services: a methodological approach for developing a common PKI-based security policy 2003.

Computers & Security 2003; 26:1873-1883.

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 12/01/2026 03:42:43

UM
CS

Pow
er

ed
 b

y T
CPDF (w

ww.tc
pd

f.o
rg

)

http://www.tcpdf.org

