
Annales UMCS Informatica AI XIV, 3 (2014) 33–42

DOI: 10.2478/umcsinfo-2014-0023

Liquid computing and analysis of sound signals

Rafał Cebryk1∗, Grzegorz M. Wójcik1†

1Institute of Computer Science, Maria Curie-Sklodowska University,

Akademicka 9, 20-033 Lublin, Poland

Abstract – Liquid Computing Theory is a proposal of modelling the behaviour of neural microcir-

cuits. It focuses on creating a group of neurons, known as a liquid layer, responsible for preprocessing

of the signal that is being analysed. Specific information is achieved by the readout layers, task ori-

ented groups of neurons, taught to extract particular information from the state of liquid layer. The

LSMs have been used to analyse sound signals. The liquid layer was implemented in the PCSIM Sim-

ulator, and the readout layer has been prepared in the JNNS simulator. It could successfully recognise

certain sounds despite noises. Those results encourage further research of the computational potential

of Liquid State Machines including working in parallel with many readout layers.

1 Introduction

The knowledge regarding modelling the activity of brain has been expanding for

several decades. Computational approach to investigation of brain or its parts became

one of the most important fields of neuroscience [1]. Experiments in computo often lead

to explanation of cognitive and psychological phenomena [2, 3]. When strenghtened

by commonly known methods of artificial intelligence they may show new quality of

results helping to understand central nervous system functionality [2, 3].

The discovery of existence of neural microcircuits with potential universal real-time

computational power led to many attempts of modelling and simulation. One of them

is the Liquid State Machine. The model, described in this article, has been used to

simulate the neural microcircuit receiving sounds and trying to recognise them despite

noises. One of many attempts of using the LSM to recognize certain words has been

∗rafal.cebryk@umcs.lublin.pl
†gmwojcik@umcs.pl

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 12/01/2026 15:27:15

UM
CS



34 Liquid computing and analysis of sound signals

presented in [4]. The authors used the Matlab LSM toolbox to perform the simulation

and recognize spoken digits.

We expect that using the LSM in attempts to recognize the voice will allow to achieve

clear results despite high noises. The nature of the work of spiking neurons should lead

to a high performance of the calculations. What is more the structure of the LSM

allows to analyze the same input at the same time in many directions, extracting more

information from the spoken words, like the mood of the speaker.

The Liquid State Machine (LSM) described in [5] can be methaphorically explained

by a lake surface reaction to different disturbances. If some stones fall into the lake, a

couple of waves will propagate on its surface. The wave patterns will differ depending

on stone weights, shapes, velocities, places where they hit the surface and the angle

at which they fall into the water. The surface of the lake represents both current

disturbance and past disturbances that have just happened. After some time they

vanish. Such a plane keeps a temporary history of past events. The LSM theory

assumes that the neural microcircuit is modelled as such a methaphoric liquid layer that

allows the input to spread and produce different liquid states covering both current and

past changes. In order to analyse the input one or more observers, trained to extract

certain parts of information, analyse the surface. One can specialise in identifying the

concentration of stone hits, another one can check their velocity etc. Similarly, the

LSM consists of one liquid layer and at least one readout layer.

The liquid layer is built of spiking neurons known as the 3rd generation neurons.

They have been introduced in order to simulate the brain dynamics. Older models

could not deliver and process the information as quick as spiking neuron models.

The main advantage of spiking neurons is that they encode the information in the

exact time of spike. A lack of spike in a certain time is also information. As a result,

not only the number of spikes but also the exact times when they occur provide a piece

of information. If the information is stored only in the frequency of signals, there is no

way to process the information as quickly as the brain does (it takes about 100 ms to

analyse and classify the visual templates by brain).

In [6] it is shown that the spiking neurons can simulate multi-layer 1st generation

neural networks by enforcing the synchronization on all the models in the network

and treating an occurrence of spike in a current step as value 1, a lack of spike equals

0. What is more it has been emphasized, that such a synchronization significantly

decreases its computational power, which lies in an asynchronous mode where subtle

differences in spike transmission times provide a lot of information, that would be lost

in the synchronous mode.

The 3rd generation neural network was used in [7] by Wolfgang Mass to build a

computational model for generic cortical microcircuit - Liquid State Machine. Mam-

malian brains process a continuous stream of data all the time. That process can not

be split into separate computational steps. That is why the main part of LSM - the

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 12/01/2026 15:27:15

UM
CS



Rafał Cebryk, Grzegorz M. Wójcik 35

liquid layer is built of spiking neurons, which theoretically work on continuous val-

ues of time1. In addition, that layer is not a task-oriented neuron circuit, but a high

dimensional dynamic system which takes on different states depending on the input.

Apart from the liquid layer the machine consists of also an input layer and at least

one readout layer. The input layer is responsible for sending the input stream to the

liquid layer. The liquid layer spreads the signal coming from the input layer and each

readout layer analyses current liquid state and extracts certain information from it. In

contradiction to the liquid layer, the readout layer is a definitely task-oriented network.

Moreover, connecting many different readout layers to the same liquid layer allows to

read different information from the input. Wolfgang Mass in [8] describes work did by

brain during walking as an argument in favour of using the LSM to model the brain

activity. The input stream coming from the eyes is being analysed in parallel to extract

different information for different purposes. One piece of the information extracted can

be looking for a place, where the foot will be placed if it is at the same level, higher

or lower than before. At the same moment the brain is checking if there are no edges

that we can hit with our leg, hand or head. In the meantime another “process” can

compute important data to make another step, to keep the balance etc. As one can see

such a stream of data contains a lot of information that should be extracted in different

directions. That is why the LSM suits that situation as we can connect many readout

layers, that will extract certain information coded in the layer state in parallel.

Fig. 1. The structure of the LSM

Fig. 1 shows the structure of the LSM. The input signal is represented by the function

u(·). It reaches the liquid layer, which works as filter LM , that all the time returns the

1During a simulation the continuous values are of course stored and used as discrete values.

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 12/01/2026 15:27:15

UM
CS



36 Liquid computing and analysis of sound signals

current liquid state xM (t). The liquid state is a result of past disturbances u(s), where

s ≤ t. It can be expressed as:

xM (t) = (LM u)(t) (1)

The value of xM (t) is analysed all the time by the readout layer fM , which produces

the output state y(t):

y(t) = fM (xM (t)). (2)

2 Experimental set-up and simulations

In order to simulate the LSM we used the Parallel neural Circuit SIMulator (PCSIM

[9]). The readout layer was achieved with Java Neural Network Simulator (JNNS), the

successor of SNNS [10].

PCSIM is a parallel version of CSIM [9]. We have experience in PCSIM-based mod-

elling [13]. It allows to perform simulations of heterogeneous networks consisting of

different neuron and synapse models. The core of this tool is built in C++ which

guarantees high performance of simulations. The main interface allowing to program

the simulations is written in Python. The main advantage of such a solution is high

efficiency in writing Python scripts and the above average flexibility of the code created

in that language. What is more, Python [11] is full of various modules allowing to ef-

fectively analyse and visualize the effects of simulations. The PCSIM supports Message

Passing Interface (MPI), which allows to split the simulation across many processes

and computers grouped in clusters.

We used the LSM structure proposed by Mass assumptions in [12]. The input layer

was connected to 30% neurons in the liquid layer. The liquid was a column of neurons

of the dimensions 16 x 16 x 32 (8192 neurons). As the probability of connection

between the input neuron and the columnar neuron was set to 30%, the input layer

was connected to approximately 2458 neurons. The probability of connections inside

the liquid layer depended on the position in the column and it was calculated from the

euclidean distance between neurons. 80% of them were excitatory, and the rest was

inhibitory. The parameters of both kinds of neurons are in Appendix A.

A set of 1017 neurons was randomly chosen from the excitatory models in order to

record their activity and analyse it by the readout layer. In order to keep the fading

memory property, the final value of each neuron was just the number of spikes sent by

them during last 20% of time of their work. Those values were treated as input values

for a readout layer, that was simulated with JNNS.

The readout layer was in fact a separate non-linear2 neural network created in JNNS

in order to analyse the output of the liquid layer. As the number of output neurons in

the liquid was 1017, the number of the input neurons in the readout network was the

same. The network consisted also of four hidden layers of 100 neurons each and the

output four neurons representing the NATO words: Alfa, Bravo, Charlie and Delta.

2The neurons in the hidden layers used an activation function based on hyperbolic tangents.

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 12/01/2026 15:27:15

UM
CS



Rafał Cebryk, Grzegorz M. Wójcik 37

The neurons are connected consecutively, all the input neurons are connected to all

the neurons in the first hidden layer, all the neurons from the first hidden layer are

connected to the second hidden layer etc. The network has been trained with the

results of simulations on noised input files. For details of the neural network learning

process see Appendix A.

In order to correctly train the readout module a script was generating input files

with different noises. The degree of noise was described with three parameters: the

probability of noise of each sample and the minimal and maximal degree of disturbance.

The algorithm of adding noises to the samples is the following:

disturbance_range=max_disturbance-min_disturbance

noised_samples=[]

for sample_value in samples:

if random.random()<disturbance_probability:

noise=min_disturbance+disturbance_range*random.random()

sample_value+=sample_value*noise

noised_samples.add(sample_value)

Our LSM was used to recognise the first four words of NATO phonetic alphabet

recorded on our own. This choice has been made due to its resistance to noises, as each

word is built from different syllables.

The words have been recorded with the frequency 8000 Hz. The best results have

been achieved when the input layer was built with one Leaky Integrate-and-Fire neu-

ron3, encoding the times of spikes on the base of the value of the sound. Since the

frequency of the recorded words was 8000 Hz, the audio samples were provided with

1.25 · 10−4s = 0.125 ms interval. The value of the signal was encoded in the number of

spikes sent during the interval between samples. The minimal interval between spikes

was 10−3 ms. 80% of time of the interval between samples has been used to store the

value of the sound - it gives 0.1 ms. During that time an appropriate number of spikes

was sent and still there was at least a 0.025 ms break before encoding the next sample.

The maximum number of spikes that could be sent within that period is 100. It means

that the values of the sounds were encoded in 100 different levels. In other words the

quantization of the sound made in order to transfer it to the liquid layer split the range

of possible sound values into 100 levels. The lowest level was encoded with one spike,

the highest with 100.

3Other attempts have been made with 100-512 input neurons that split possible sound values

into 100-512 levels and each neuron send a spike when the sound reached its level. It did not give the

expected results, as the dynamics of the liquid was too low to produce states that could be recognised

by the readout layer.

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 12/01/2026 15:27:15

UM
CS



38 Liquid computing and analysis of sound signals

3 Results

Our simulation scenario contained almost 100 different runs that have been sched-

uled and executed with different parameters and architecture4. In order to repeat those

simulations on different input we needed to set a constant value in the PCSIM seeds

of random engines to make sure that connections between neurons are the same. Oth-

erwise at each simulation PCSIM would create a new network with new connections

between neurons based on random values accordingly to the probability of connections.

A Python script executed a simulation with the same architecture on different input

files. What is more, in order to correctly train the readout module, the script was

generating new files based on the input files with appropriate disturbances (defined in

the configuration file). As a result, for each input file a group of simulation results was

achieved. The number of simulations executed from one input file equalled the number

of different disturbances used. The disturbance impact was defined with two factors:

the probability of noise occurence and the range of random change of input value. We

have tested it on five different probabilities of noise occurrence: 5%, 10%, 15%, 20% and

25%. The ranges of disturbances were symmetric with respect to zero: (−0.05− 0.05),

(−0.1, 0.1), (−0.15, 0.15), (−0.2, 0.2) and asymmetric: (0.1−0.2), (0.2−0.3), (0.3−0.4)

and (0.4− 0.5).

Fig. 2. Training squared error plot.

4We tried different combinations of a number of input neurons used to code the information and

the number of output neurons whose spikes were recorded and analysed with the readout module.

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 12/01/2026 15:27:15

UM
CS



Rafał Cebryk, Grzegorz M. Wójcik 39

The table in Appendix B shows the process of training the readout network. It

contains the information regarding used algorithm, the number of learning cycles, the

probability of noise for a sample and the ranges of disturbances.

The network was not trained on clean data but on the input with noises. The plot

in Fig. 2 shows the value of the squared error during training. The black line shows

the squared error of the training set and the red line shows the squared error of the

verification set.

The results and performance of such training are shown in Fig. 3 and in the Table 1.

The verification has been made on the input where the probability of disturbance was

25% and the level of disturbance equalled 0.4 - 0.5. The network was not trained on

that set of inputs either, it was used only for verification. Note that accuracy of well

trained network in all four cases exceeded 90%.

Fig. 3. JNNS network recognizing theAlfa pattern with 0.902 accuracy.

As it has been shown on the squared error plot, the network has learned to recognise

all the four patterns. What’s more it was even capable of recognizing a highly noised

input. Similar results were achieved in [4].

The readout network could successfully recognise the patterns despite strong distur-

bances.

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 12/01/2026 15:27:15

UM
CS



40 Liquid computing and analysis of sound signals

Table 1. JNNS network accuracy. Each column represents different inputs

on the network, each row represents the value calculated by each output

neuron.

Alfa input Bravo input Charlie input Delta input

Alfa neuron 0.902 -0.074 0.003 -0.078

Bravo neuron -0.096 0.916 0.057 0.083

Charlie neuron 0.085 -0.059 0.901 -0.027

Delta neuron -0.041 0.092 0.046 0.926

4 Conclusions

The results of performed simulations showed that the LSM can be used to recognise

even strongly disturbed noisy patterns with the accuracy better than 90%.

However, all three modules: the input, liquid and readout layer must satisfy certain

conditions in order to perform a given task. The input must produce enough spikes

to obtain dynamic responses in the liquid layer. The liquid layer should be complex

enough and diverse in order to let the input spread on the layer. In addition, it should

produce different states for different inputs and avoid chaotic reactions. Finally, the

readout layer should be able to recognise certain liquid states.

The possibility of using many readout layers to analyse the same liquid layer contain-

ing preprocessed input signal is very promising. It should be possible to use the LSM

straight in the voice recognition problems and determine not only the exact spoken

words, but also the sex or mood of the speaker without the need of copying the input

signal.

It would be also interesting to check the performance of LSMs built of biologically

realistic Hodgkin-Huxley neurons [14, 15] when performing the tasks discussed in this

paper.

In fact, the simulated models recognised patterns, not words. The approach pre-

sented herein is then a prototype of real voice recognition. We will soon repeat those

simulations with different attempts to code the sound samples not in linear values but in

frequencies, so the final model would be able to recognise the word spoken by different

people, with different rate, intonation etc. The continuous way of simulations should

allow to perform real-time computation on voice, allowing to extract the information

on the fly.

Appendix A - Parameters of JNNS Neural Network, Excitatory and In-

hibitory neurons used in simulations

Excitatory model of neuron: The cell membrane capacity 2e-10 Fahrads;The

cell membrane resistance 1e8 Ohms;The initial potential -60e-3 milli-

volts;The threshold potential -50e-3 millivolts; The resting potential -49e-3

millivolts;The reset potential -60e-3 millivolts;The refraction period 5e-3

milliseconds

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 12/01/2026 15:27:15

UM
CS



Rafał Cebryk, Grzegorz M. Wójcik 41

Inhibitory model of neuron: The cell membrane capacity 3e-10 Fahrads;The

cell membrane resistance 1e8 Ohms;The initial potential -60e-3 milli-

volts;The threshold potential -50e-3 millivolts; The resting potential -49e-3

millivolts;The reset potential -60e-3 millivolts;The refraction period 5e-3

milliseconds

: JNNS Neural Network Training The network was trained using the JE Back-

propagation method with learning parameters set as follows η = 0.2, dmax =

0.1, forceT = 0.5 and 150 cycles for 1 step.

Appendix B - Readout training details

The neurons in the hidden layers used the Act_Act_TanH_Xdiv2 activation function.

No. Training Learning Disturbance Minimal Maximal

algorithm cycles probability disturbance disturbance

1 Rpropagation 10 0.05 -0.05 0.05

2 Rpropagation 10 0.10 -0.05 0.05

3 Rpropagation 10 0.15 -0.05 0.05

4 Rpropagation 10 0.20 -0.05 0.05

5 Rpropagation 10 0.25 0.10 0.20

6 Backpropagation 150 0.25 0.10 0.20

References

[1] R. Tadeusiewicz, “Modelowanie elementów systemu nerwowego z wykorzystaniem technik infor-

matycznych, a zwłaszcza sztucznych sieci neuronowych” in “Na ścieżkach neuronauk pod redakcją

naukową Piotra Fracuza”, pages 13-34, Wydawnictwo KUL, 2010.

[2] R. Tadeusiewicz, “Modele elementów układu nerwowego w postaci sztucznych sieci neuronowych”

in “Neurocybernetyka Teoretyczna”, pages 109-127, Wydawnictwa Uniwersytetu Warszawskiego,

2009.

[3] R. Tadeusiewicz, “Using Neural Networks for Simplified Discovery of Some Psychological Phenom-

ena” in “Artificial Intelligence and Soft Computing”, Lecture Notes in Artificial Intelligence, L.

Rutkowski et al., eds., editor, pages 104-123, vol. 6114, Springer-Verlag, Berlin – Heidelberg – New

York, 2010.

[4] D. Verstraeten, B. Schrauwen and D. Stroobandt, "Isolated word recognition using a Liquid State

Machine" in ESSANN’2005 proceedings - European Symposium on Artificial Neural Networks,

Bruges (Belgium).

[5] W. Maass, T. Natschlaeger, and H. Markram. Computational models for generic cortical micro-

circuits. In Computational Neuroscience: A Comprehensive Approach, J. Feng, editor, chapter 18,

pages 575-605, Boca Raton, 2004.

[6] W. Maass, “Computation with spiking neurons,” in The Handbook of Brain Theory and Neural

Networks (M. A. Arbib, ed.), pp. 1080–1083, 2 ed., 2003.

[7] W. Maass and H. Markram, “On the computational power of recurrent circuits of spiking neurons,”

Journal of Computer and System Sciences, vol. 69, no. 4, pp. 593–616, 2004.

[8] W. Maass, “Liquid computing,” in Computability in Europe 2007 - CiE’07, Springer (Berlin), 2007.

[9] “PCSIM: A Parallel neural Circuit SIMulator.” http://www.lsm.tugraz.at/pcsim/.

[10] “What is SNNS?” http://www.ra.cs.uni-tuebingen.de/SNNS/announce.html.

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 12/01/2026 15:27:15

UM
CS



42 Liquid computing and analysis of sound signals

[11] “Python Programming Language – Official Website.” http://www.python.org/.

[12] W. Maass, T. Natschlaeger, and H. Markram, “Real-time Computing without stable states: A

New Framework for Neural Computation Based on Perturbations,” Neural Computation, vol. 14,

no. 11, pp. 2531–2560, 2002.

[13] G. M. Wojcik and J. A. Garcia-Lazaro, "Analysis of the neural hypercolumn in parallel pcsim

simulations," Procedia Computer Science, vol. 1, no. 1, pp. 845-854, 2010.

[14] G. M. Wojcik, "Self-organising criticality in the simulated models of the rat cortical microcircuits,"

Neurocomputing, no. 79, pp. 61-67, 2012.

[15] G. M. Wojcik, "Electrical parameters influence on the dynamics of the hodgkin-huxley liquid

state machine," Neurocomputing, no. 79, pp. 68-78, 2012.

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 12/01/2026 15:27:15

UM
CS

Pow
er

ed
 b

y T
CPDF (w

ww.tc
pd

f.o
rg

)

http://www.tcpdf.org

