Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 38Y/20260)7-38:41 ANNALES UMCS INFORMATICA

DOI: 10.1515/umcsinfo-2015-0005

Transforming Source Code to Mathematical Relations for Performance
Evaluation

Habib Izadkhah®*

! Department of Computer Science,
Faculty of Mathematical Sciences, University of Tabriz
Tabriz, Iran

Abstract — Assessing software quality attributes (such as performance, reliability, and security) from source
code is of the utmost importance. The performance of a software system can be improved by its parallel
and distributed execution. The aim of the parallel and distributed execution is to speed up by providing the
maximum possible concurrency in executing the distributed segments. It is a well known fact that distributing
a program cannot be always caused speeding up the execution of it; in some cases, this distribution can have
negative effects on the running time of the program. Therefore, before distributing a source code, it should be
specified whether its distribution could cause maximum possible concurrency or not. The existing methods
and tools cannot achieve this aim from the source code. In this paper, we propose a mathematical relationship
for object oriented programs that statically analyze the program by verifying the type of synchronous and
asynchronous calls inside the source code. Then, we model the invocations of the software methods by
Discrete Time Markov Chains (DTMC). Using the properties of DTMC and the proposed mathematical
relationship, we will determine whether or not the source code can be distributed on homogeneous processors.
The experimental results showed that we can specify whether the program is distributable or not, before
deploying it on the distributed systems.

Keywords: Distributed Software Systems, Source Code, Speed-up, Discrete Time Markov Chains

(Received: 18.05.2015; Revised: 21.07.2015; Published: 24.09.2015)

1 Introduction distribution can have negative effects on the running time

of the program. When there are many calls between two

The need for high speed computation in large-scale sci-
entific applications for analyzing complex scientific prob-
lems is very high, so that the common computers would
not be able to satisfy it. Therefore, nowadays, using the
distributed systems and processing power of numerous
processors or cores to reach the favorable speed is known
as a fact [1]. Yet, as a fact, creating a large scale dis-
tributed program is always more difficult than creating
a non-distributed program with the same functionality,
as the creation of a distributed system can change into a
tedious and error-prone task.

Since the computational programs have many compu-
tations, so its execution requires more time. Therefore, if
a program does not have the ability to distribute, there
will be a lot of waste time. The most important time of a
distributed program is invocation or communication time
of their methods. These calls spend the most execution
time. Certainly, by distributing a program, if two classes
of it can be distributed on two different machines, the in-
vocations between those classes will turn into the remote
calls. As reference [2] specifies, in some cases, the program

*izadkhah@tabrizu.ac.ir

methods, the network traffic increases and as a result, ef-
ficiency of the distributed program will be lower than the
initial sequential program. So, regarding that construct-
ing the distributed program from the source code is com-
plex and time consuming, it is better to predict whether
the source code is distributable or not, before distributing
a program on the machines. None of the existing methods
and tools can to achieve this goal from source code.

1.1 The Problem and the Claim

The overall problem addressed in this paper is to spec-
ify whether the source code has the potential for paral-
lelization on homogeneous processors; i.e., in case of dis-
tribution, whether it brings the maximum concurrency
compared to the sequential mode. We claim that it is
possible to provide a solution to the mentioned problem
by doing the following tasks:

(1) Modeling software’s method invocations by

Markov chains as (described in section III) as :

e Markov chains nodes represent methods

and edges between nodes represent calls
between methods,

ANNALES UMCS INFORMATICA

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 3W0Y/2026°07:38:41

DOI: 10.1515/umcsinfo-2015-0005

e weight of the edges in Markov chains, shows
the number of calls between the methods.

(2) Determine the maximum potential of dis-
tributability of each method (described in
section IIT)

(3) Determine the expected performance of the
source code from obtained Markov chain (de-
scribed in section IIT)

(4) ompute the speedup. Speedup is defined as the
execution time of a sequential program divided
by the execution time of a parallel program
that computes the same result. In particular,
Speedup = T, /T, where T, the sequential time
and T}, is the expected performance.

1.2 The Paper Outline

The other sections of the paper are organized as fol-
lows: A literature review on the researches conducted by
others is discussed in section II. In section III, we propose
a mathematical relation of time estimation by which the
potential for distribution of the source code can be spec-
ified. Case study is discussed in sections IV. At the end,
section V deals with conclusions and future works.

2 Related Work and Background

The complicated computational applications cannot be
executed in an acceptable time on the computation ma-
chine, so they should be divided into small tasks. We can
use distributed or multiprocessors systems for executing
of these tasks. Nowadays, most distributed and multi-
processor tools use scheduling methods for distribution.
The aim of scheduling is execution of a program on several
processors such that the time of execution of the whole
program will be minimal, considering the time of tasks
and communication time between the processors [3]. The
scheduling methods can be divided into two groups; in-
cluding those which can assurance the quality of service,
and those which cannot. The former scheduling systems
are preferred to the latter ones. CONDOR [4], SGE [5],
PBS [6] and LSF [7] can be referred to as some of the
most popular and widely used scheduling systems. These
scheduling systems do not guarantee the service quality.
These tools perform the scheduling only at the job level
and not at applications’. Unlike the above systems, there
are some which observe the service quality in schedul-
ing. Such systems observe Job Characteristics, Planning
in Scheduling, Rescheduling and Scheduling Optimization
in their scheduling. AppleS [8], GrADS [9] and Nimrod/G
[10] are among the most famous systems of this kind.
Moreover, none of the aforementioned schedulers can pre-
dict whether an offered program has the potential to be-
come parallelized, or whether speedup can be achieved in

case of parallelization. Also, a tool called DAGC is pre-
sented to find the optimal architecture distribution [11].
DAGC uses clustering method for finding optimal archi-
tecture distribution. The tool uses a mathematical rela-
tion to measure the quality of the obtained clusters. The
main problem in mathematical relation used in this tool
and such tools is described above it does not have the abil-
ity to determine whether a program has the capability of
being parallel or not. In the previous work [12], we pro-
posed an analytical model for determining distributability
of a specific method. However, our method in the pre-
vious work cannot determine overall distributability of a
program; also, the effectiveness of each method is not con-
sidered in the distribution of it. In this research, we want
to determine the overall distributability of a program us-
ing DTMC considering the effectiveness of each method.

2.1 Overview of Discrete Time Markov Chains

In this section, we discuss Discrete Time Markov
Chains (DTMCs), which we use to model the source
code’s invocations [13]. A DTMC is described by its
states and transition probabilities between the states;
where we indicate the transition probabilities between
the states as one-step transition probability matrix. The
one-step transition probability is the probability that the
process, when in state i at time n, will next transition to
state j at time n 4+ 1. We write:

1) Py(n) = P(Xni1 = j| Xo =).

Note that all the elements in a row of P add up to 1 and
each of the P; ;’s lie in the range [0, 1]. For our purpose,
we use absorbing DTMC. One DTMC is called absorb-
ing if at least one state has no outgoing transition. Each
DTMC with several final states can be converted into an
absorbing DTMC. It is performed by adding a final state
to DTMC. Next, a transition is drawn to the added ab-
sorbing state from all the final states available in DTMC.
We can partition the transition probability matrix of an
absorbing DTMC as:

S]

If the DTMC has n states with m absorbing states, Q
would be a (n —m) x (n—m) sub-stochastic matrix (with
at least one row sum < 1) describing the probabilities of
transition only between transient states, 1 being a m x m
identity matrix, 0 would be an n x (n x m) matrix of zeros,
and C would be an (n —m) X m matrix describing the
probabilities of transition between transient states and
absorbing state. The (i,j)-th entry of Q¥ denotes the
probability of arriving to state s; after exactly k steps,

ANNALES UMCS INFORMATICA

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 3W0Y/2026°07:38:41

DOI: 10.1515/umcsinfo-2015-0005

starting from state s;. Hence the inverse matrix (I —Q)~*
exists. This is called the fundamental matrix F:

(B) F=(I-Q) '=T+Q+@Q+Q*+---) Q"
=0

Let X; ; represent the number of visits to state j start-
ing from the state i before process is absorbed. It can
be shown that the expected number of visits to state j
with starting from state ¢ (i.e, E[X ;]), before entering
an absorbing state is given by the (i,7)-th entry of the
fundamental matrix F' [14, 15]. So

(4) E[X; ;] =mi;,

m; ; is the (7,7)-th entry of the fundamental matrix F.
The variance of the expected number of visits could also
be computed using the fundamental matrix. Let o; ; de-
note the variance of the number of visits to the state j
starting from state i. Define Fp = [md; ;| such that:

m;;jifi=]j
(5) md;j; = T
0 otherwise .

In other words, Fp represents a diagonal matrix with
the diagonal entries the same as that of F. If we define

Fy = [m7], we have:

(6) 0?=F@2Fp—1)—F,.
Hence:

(7) Var[X; ;] =07,

3 Predicting Performance Of A Source
Code

In this section we describe our approach for modeling a
software system that method invocations are represented
by an absorbing DTMC; such that DTMC states repre-
sent the software methods, and the transitions between
states represent transfer of control from one method to
another. We assume that the system consists of n meth-
ods, and has a single initial state denoted by 1, and a
single absorbing or exit state denoted by n. Consider
Fig. 1. Numbers on edges indicate the probability of
movement, from one method to another method. In this
paper the probability to go from method x to method y
is computed as [number of method call from z to y / to-
tal number of out method call of = (i.e. fan out)]. The

method invocations of the source code are given by the
one-step transition probability matrix P.

ms

FiGure 1. Modelling method invoca-
tions for a sample program with DTMC

Equation (8) shows the one-step transition probability
matrix P for Figure 1.

0 05 05 0 0 0 0]
0 025 0 025 025 0 025
0 0 0 0 05 05 0
8 P=|0 0 0 0 0 0 1
0 0 0 05 0 0 05
o 0 0 0 0 0 1
o o o o o0 0 1|

Let PD, denotes the potential of distributability of
method 4 that indicated by node ¢ in the DTMC. Dur-
ing a single execution, the performance of the software,
denoted by the random variable P is given by:

(9) P= ﬁPDiX“ .

where X;; denotes the number of visits to the transient
state ¢ starting from the state 1. Therefore, the expected
performance of a software system is as follows:

(10) E[P]=E

ﬁ PDiX“] = ﬁ E

Thus to obtain the expected performance of the source
code, we need to obtain E [PD;X“
pected potential of distributability of method i for a single

PDZ.X“] .

}, which is the ex-

run of the software. Using the Taylor series expansion,
E [PDZ.X“] in relation 10 can be written as relation 11.

(11)
E[PDixLl] _ PD1:E‘[X1,Z]+§(PDE[X1,Z]

%

Y(logPD;)*VarPD; .

Let E[X, ;] = my; and Var[X, ;] = o}

7 j» relation (11)

may be written as:

ANNALES UMCS INFORMATICA

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 3W0Y/2026°07:38:41

DOI: 10.1515/umcsinfo-2015-0005

(12)

E[PD?“} = PD™ + ~(PD"™")(logPD;)?0>1, 1.

N | =

my; is the expected number of visits to state i and of
is the variance of the number of visits to state i. m; ; and
o1 ; can be obtained from DTMC analysis. Relation (10)
can thus be written as:

(13)
w Co1 _
E[P] = H(PD:"“ + i(PD;n“)(logPDi)Qa%i)
3.1 Computing Potential Of Distributability Of

Method 2

In this section, we are going to determine Potential of
Distributability (PD) of each method to determine over-
all performance (i.e., P) of a program. For achieve this
aim, we determine P D;, to measure the values of different
distributions for method 4. Invocation (or call) between
methods are two types of asynchronies and sequential.
If by distributing a program, two methods of the pro-
gram distribute in two different machines, calls between
those methods will turn into asynchronies; and in sequen-
tial call, two methods of the program are placed on the
same machine. Considering of communication time, our
method considers two asynchronies and sequential mode
for each call; to determine which mode (sequential or par-
allel) can reach a maximum speed up.

To estimate the speed-up, the execution time of all in-
structions should be estimated. The execution time of all
instructions, except the nested calls, can be computed by
the existing methods [16-17]. The existing methods can-
not be applied easily to calculate the execution time of
nested calls because the execution time of a caller method
is depending on the fact that the calls inside it are carried.
out in a sequential or asynchronous manner. For exam-
ple, consider Listing 1. In the Listing 1, in the time ¢4,
the current method (caller method) will continue to work
in a non-stop manner until reaching the use point of the
results of a callee method. We call these points’ synchro-
nization points [18] and is shown by S. So, one method
continues to work after calling a method from a remote
locations (other distributed segments) and waits for a call
response only when requires that response. As shown in
Listing 1, the level of concurrency in executing the caller
and the callee methods depends on the time interval be-
tween the call point and use point of the call results. The
problem is the estimation of this interval time. As shown
in Listing 1, there may be other calls between the call
point and use point and the execution of these calls can
be either synchronous or asynchronous.

10

LisTING 1. Several nested calls
Method m () {

Some statements // t0
Call R
Some statements // t1
Use R // 8
Some statements // t2
}
Method R () {
Some statements // t3
Call P
Some statements // t4
Use P // S
Some statements // tb
}
Method P () {
Some statements // t6
}
3.1.1 Estimated execution time for sequential mode

In Listing 1, considering methods m, R and P, if all of
them executed sequentially (or synchronously), the esti-
mated execution time will be calculated as follows:

(14) PDpmertel = o 4ty +to + ta+ ts + 11 + to.

We can write above relation for Listing 1 in the re-
cursive form and expand it for the nested call with any
depth.

(15) PDferuentz’al — tO 4 PD;‘;quential + tl + t2)
(16) PD}e%equential — tS + PD;equential Tty t5.
(17) PDsPequential _ t6)

Generally, for the sequential call, estimated execution
time relation, is as relation:

(18) PpDscquential _ Z £+ pD;equentz'al .

3.1.2 Estimated execution time for asynchronous

mode

Now we calculate the estimated execution time when
methods are executed parallel (or asynchronously). See
again Listing 1. If methods m, R and P are executed

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 38Y/20260)7-38:41 ANNALES UMCS INFORMATICA

DOI: 10.1515/umcsinfo-2015-0005

asynchronously, the estimated execution time will be cal-
culated as follows:

PDEVN =ty +t1 + L+

(19) mazx(PDY™" —) + Cy + Linit, 0)
+to .
20) PDEY™N =ty 4ty + Tynir+
maz(PDEY™ ™ —t4 + Oy + Liir, 0) + t5.
(21) PDEYh — .

C} is the communication time and I;,;; shows the prepara-
tion time for doing remote call. Generally, the estimated
time relation for the parallel (or asynchronous) is calcu-
lated as follows:

PDEY M =N "t 4> i, +

(22) asynch
max(PDEY" " —t; + Cy + Linit, 0) .

3.1.3 Determining the Potential of Distribution

Considering the relations (18) and (22), the general
mathematical form of a PD relation is written as follows:

(23)
PD,, = Zti + Zai * PDp; + Z(l —a;) X (Linit,+
maa:((PDn + Ct) —t; + Linit, 0)) .

In the above relation, depending on the call to be syn-
chronous or asynchronous, the value of a; is considered as
1 and 0, respectively. The goal is to determine a;, so that
this minimizes PD,, . In the relation (23), the commu-
nication time is C; and ¢; is the estimated time between
the callee point of I; and the synchronization point of .S;
(use point).

For example, to obtain PD for Listing 1, we need to
combine the estimated times for the asynchronous (re-
lation 22) and sequential execution (relations 15-17) as
follows:

(24)
PD,, = to+ay+ PDp + 1+
(1 —a1) X (Iinit + max(PDg — t1 + C + Linit, 0)) +ta2,
PDp = ts +ay PDp + t4+
(1 = az) X (Iinit + max(PDp —ty + Cy + Linit,0)) + ts5,
GTEp = 1g.

11

In relation 24, the aim is to determine a; and as in a
way to minimize PD,,, PDr and PDp.

LI1STING 2. A sample program code

Class A {
Public void m () {

// some statements T1
B b=new B();
int r1 = b. m(Q);

print (r1); //S1

cO;

n();

DO

d.pQ);

statements T2

C c=new
int r2= c.
D d=new
int r3=
// some
if (r2==1) {...} //8S2
//some statements T3
F f=new F();
int rd4= £.gQ;
If(r1>r2 && ri>r3 && ri>r4)
{...} // 83 and 54
// some statements T4
}
} // class

Class B extends A{
static int m() {
// some statements T5
}

} // Class

Class C extends A{
static int n() {

// some statements T6

}
} // Class
Class D {
int p() {
D d=new D();
int r=d.pQ);
Print (r); //S5
F f=new F();
int ri= £f.g(Q);
If(r>r1) {...} // S6
}
} //Class
Class F {
// some statements T7
} //Class

Considering the program code in the Listring 2, PD 4,
can be written as (25).

ANNALES UMCS INFORMATICA

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 3W0Y/2026°07:38:41

DOI: 10.1515/umcsinfo-2015-0005

(25)
PD(A_m) =T+ a; * PD(Bm)

PD(B‘m) = T5, PD(Cn) = T6, PD(D.p) = as * PD(D.p)

T(Ss3)

Sequential Time
(seconds)
380

Expected Distributed
Time (seconds)
261

Speed-up
1.455

TABLE 1. Distributed execution times,
sequential execution times and speed-up
for Listing 2

The aim of PD relations in (25) is to determine a4, as,
as, a4 and as in a way to minimize PD(4.p), PD(B.m),
PD(C‘.n)a PD(D.p) and PD(F_g).
simplex algorithm [20] to determine the binary values of
a; (for synchronous call the value of a; is considered as 1
and for asynchronous calls, the value of a; is considered
as 0). Simplex method is a popular algorithm for linear
programming. Then, after determining PD for methods
m, n, p and g, we make DTMC for the program of Listing
2 and then we compute the potential of distributability
(using relation 24) for each method and then of course we
will determine expected performance (relation 12). Also,
the sequential execution time of the program is calculated
as well. Finally, the speedup is calculated by dividing the
For rela-
, the communication overhead is considered as

We use the Dantzig’s

sequential time to the expected performance.
tions (25)
1 second and T3, T, T5, Ty and T5 (execution time of
non-call statements) are considered as 40, 35, 45, 50 and
20 seconds. Table 1 shows the expected distributed po-
tential (using relation 13), sequential, and speed-up exe-
cution times for Listing 2. Since speed-up is bigger than
one, this indicates that the program is capable of parallel
execution; i.e.,
faster than the sequential execution of the program.

the parallel execution of the program is

= max((PDp.g) + 2tc,) + T3+ ((1 — az) * T(S2) + T»),0

12

+ (1 —=a1) *T(S1) + ag * PD(c.ny + a3 * PD(p p) + To 4 (1 — az) * T'(S)+
T3+ ay *PD(Fg) + (1
-

—a3) * T(S3) + (1 — as) * T(S4) + Ty,
as) * T(S5) + ag * PD(p.g) + (1 — ag) * T'(Ss) ,
PDpg) =Tz,

T(S1) = max(PDp.m) + 2t.,,0),

T(S2) = max(Ty + a3 * PD(p) + 24,0

)

)

)
)

T(S4) = mazx((PDp.g) + 2t.,,0),
T(Ss5) =)
0)

T(Ss) =

max((PD(p.p + 2t.,,0),
am((PD(Fg) + thu

4 Evaluation Result

In this section, we evaluate the performance of the pro-
posed method. We want to determine when the speed-up
achieved by our method is greater than one; the actual ex-
ecution will speed up. For achieve this goal, we use jDis-
tributor [2] tool. jDistributor is a tool for automatic dis-
tribution of the sequential program on the homogeneous
distributed systems using the Java Symphony middleware
[19]. The algorithm used in the jDistributor is a hierar-
chical clustering method and its goal is to find an appro-
priate clustering for distribution. We use the well-known
travelling salesman problem (T'SP) for evaluating of the
proposed method. We compute PD?®°9"¢"°¢ and PD*%¥"™
from source code. We then predict from PD relation, the
estimated time of the parallel and sequential execution
for different graph nodes and then calculate speed-up by
them. Afterwards, we distribute the T'S P on the network
including three computers by use of the jDistributor tool
and then we calculate the parallel and sequential execu-
tions time. The results are shown in Table 2.

5 Conclusion

In this paper, we introduced a new approach to spec-
ify whether the source code is distributable or not, before
the distribution. For achieve this goal, by considering
asynchronous and sequential calls, a mathematical rela-
tionship was proposed to measure different distributions
values from the same program code. Then, we model the
software’s method invocations by Discrete Time Markov
Chains (DTMC). DTMC and its properties and proposed
mathematical relationship can determine whether or not
the source code distribution capabilities on homogeneous
processors.

ANNALES UMCS INFORMATICA

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 3/0Y/2026707:38:41

DOI: 10.1515/umcsinfo-2015-0005

Graph No. Estimated Execution Time (Ug(:gu?]ljiifl(}ﬁftlgﬁ trggln[eQ])
Expected Distributed : : . .
Nodes | Edges Se.quential'Time Tilfle (using relations Speed-up Sequ.el?tml Time Dlsmﬁ.uted Time Speed-up
(using relation 18) 13 and 23) (millisecond) (millisecond)
20 30 405 4375 0.092 589 7717 0.076
30 50 801 4932 0.162 1281 8310 0.154
60 100 2230 5401 0.412 3442 8503 0.404
80 180 7569 7220 1.048 13314 12809 1.039
100 310 19341 10002 1.933 21773 16731 1.301
130 420 35987 20075 1.792 43517 30722 1.416
170 686 59811 28676 2.085 82973 40362 2.055

TABLE 2. Comparison of estimated execution time using PD relation with its actual execution time

5.1 Future Work

We plan to extend and improve this work as follows:
Our aim is to propose an algorithm, which attempts to
improve the speed-up as much as possible in the distribu-
tion environments by reordering instructions at the com-
pilation time. Therefore, it attempts will be made to in-
crease distance between the caller points to its use point
using the techniques known as instructions scheduling, for
increase concurrent time of caller and callee methods as
much as possible.

References

[1] J. AL-Jaroodi, N. Mahamad, H. Jiang, D. Swanson, “JOPI:
a Java object passing interface”, Concurrency Comput. Pract.
Exp., Volume 17, pp. 775-795, 2005.

S. Parsa, and V. Khalilpoor, “Automatic Distribution of Sequen-
tial Code Using JavaSymphony Middleware”, SOFSEM 2006,
LNCS 3831, pp. 440 — 450, 2006.

L. S. Georgios, and D. K. Helen, “Scheduling multiple task
graphs in heterogeneous distributed real-time systems by ex-
ploiting schedule holes with bin packing techniques”, Simulation
Modelling Practice and Theory, Volume 19, Issue 1, pp. 540-552,
2011.

D. Thain, T. Tannenbaum, and M. Livny, “Distributed Com-
puting in Practice: The Condor Experience”, Concurrency and

(2]

(3]

Computation: Practice and Experience, Volume 17, No. 2-4, pp.
323-356, 2005.

W. Gentzsch, “Sun Grid Engine: towards creating a compute
power grid Cluster”, Proceedings. First IEEE/ACM Interna-
tional Symposium on Cluster Computing and the Grid, pp. 35
— 36, 2001.

B. Nitzberg, J. M. Schopf, J. P. Jones, “PBS Pro: Grid com-
puting and scheduling attributes Grid resource management”,
pp. 183 — 190, 2004, Kluwer Academic Publishers Norwell, MA,
USA.

S. Zhou, J. Wang, X. Zheng, P. Delisle, “Utopia: A Load Shar-
ing Facility for Large, Heterogeneous Distributed Computer Sys-
tems”, Software—Practice & Experience Volume 23 Issue 12, pp.
1305 — 1336, 1993.

F. Berman, “Adaptive computing on the Grid using ApplLeS,
Parallel and Distributed Systems”, IEEE Transactions on, Vol-
ume 14 , Issue 4 pp. 369 — 382, 2003.

[5]

(8]

13

[9] F. Berman, “New grid scheduling and rescheduling methods in
the GrADS project”, International Journal of Parallel Program-
ming - Special issue: The next generation software program
archive, Volume 33, Issue 2, pp. 209 — 229, 2005.

[10] Oriented Grid and Utility Computing (Wiley Series on Parallel
and Distributed Computing), Editors Rajkumar Buyya and Kris
Bubendorfer, ISBN-13: 978-0470287682.

[11] O. Bushehrian, “Automatic actor-based program partitioning”,
Journal of Zhejiang University-SCIENCE C (Computers & Elec-
tronics), 11(1), pp 45-55, 2010. [doi: 10.1631/jzus.C0910096]

[12] A.Isazadeh, J. Karimpour, I. Elgedawy, H. Izadkhah, “An An-
alytical Model for Source Code Distributability Verification”,
Springer Journal of Zhejiang University-SCIENCE C, Vol. 15,
Issue 2, pp 126-138, 2014.

[13] A.Isazadeh, I. Elgedawy, J. Karimpour, H. Izadkhah, “An Ana-
lytical Security Model for Existing Software Systems”, to appear
in Applied Mathematics & Information Science, Vol. 8, Issue 2,
pp 691-702, 2014.

[14] U. N. Bhat, “Elements of Applied Stochastic Processes”, second
ed. John Wiley & Sons, Inc, 1984.

[15] K. S. Trivedi, “Probability and Statistics with Reliability,
Queuing and Computer Science Applications”, John Wiley and
Somns, 2001.

[16] M. Schoeberl, “A time predictable Java processor”, Proc. Conf.
Design, Automation and Test in Europe, Germany, pp. 800-805,
2006

[17] C. A. Healy, M. Sjodin, D. B. Whalley, “Bounding loop iter-
ations for timing analysis”, Proc. IEEE Real-Time Technology
and Applications Symp., pp. 12-21, 1998.

[18] R. Maani, S. Parsa, “An Algorithm to Improve Parallelism in
Distributes Systems Using Asynchronous Calls”, 7th Int. Conf.
on Parallel Processing and Applied Math, p.312-317, 2007.

[19] T. Fahringer, A. Jugravu, “JavaSymphony: new directives to
control and synchronize locality, parallelism, and load balanc-
ing for cluster and GRID-computing”, Proc. Joint ACM Java
Grande — ISCOPE 2002 Conf., Seattle, Washington.

[20] P. A. Jensen and J. F. Bard, “Operations Research Models and
Methods”, published by John Wiley and Sons, 2003.

http://www.tcpdf.org

