
 ANNALES UMCS INFORMATICA DOI: 10.17951/AI.2016.16.2.25

Opening Access To Practice-based Evidence in

Clinical Decision Support Systems with Natural

Query Language

Paweł Kapłański

Department of Applied Informatics in Management, Faculty

of Management and Economics

Gdansk University of Technology,

Gdansk, Poland

e-mail: pawel.kaplanski@zie.pg.gda.pl

Alessandro Seganti

Cognitum

Aleje Jerozolimskie 81, 02-001 Warsaw, Poland

e-mail: a.seganti@cognitum.eu

Krzysztof Cieśliński

Cognitum

Aleje Jerozolimskie 81, 02-001 Warsaw, Poland

e-mail: k.cieslinski@cognitum.eu

Aleksandra Chrabrowa

Cognitum

Aleje Jerozolimskie 81, 02-001 Warsaw, Poland

e-mail: a.chrabrowa@cognitum.eu

Jerzy Koziolkiewicz

Cognitum

Aleje Jerozolimskie 81, 02-001 Warsaw, Poland

e-mail: j.koziolkiewicz@cognitum.eu

Marcin Bryk

Cognitum

Aleje Jerozolimskie 81, 02-001 Warsaw, Poland

e-mail: m.bryk@cognitum.eu

Iwona Ługowska

Maria Sklodowska-Curie Memorial Cancer Center

Institute of Oncology in Warsaw

Warsaw, Poland

e-mail iwona.lugowska@coi.pl

Abstract—Evidence-based medicine can be effective only if

constantly tested against errors in medical practice. Clinical

record database summarization supported by a machine allows

allow to detect anomalies and therefore help detect the errors in

early phases of care. Summarization system is a part of Clinical

Decision Support Systems however it cannot be used directly by

the stakeholder as long as s/he is not able to query the clinical

record database. Natural Query Languages allow opening access

to data for clinical practitioners, that usually do not have

knowledge about articial query languages. Results: We have

developed general purpose reporting system called Ask Data

Anything (ADA) that we applied to a particular CDSS

implementation. As a result, we obtained summarization system

that opens the access for these of clinical researchers that were

excluded from the meaningful summary of clinical records stored

in a given clinical database. The most significant part of the

component - NQL parser - is a hybrid of Controlled Natural

Language (CNL) and pattern matching with a prior error repair

phase. Equipped with reasoning capabilities due to the intensive

use of semantic technologies, our hybrid approach allows one to

use very simple, keyword-based (even erroneous) queries as well

as complex CNL ones with the support of a predictive editor. By

using ADA sophisticated summarizations of clinical data are

produced as a result of NQL query execution. In this paper, we

will present the main ideas underlying ADA component in the

context of CDSS.

Keywords— Clinical Decision Support System (CDSS), Natural

Query Language (NQL)

I. INTRODUCTION

We define here Clinical Decision Support System (CDSS)

after Sim et al.[1] as: “a software that is designed to be a direct

aid to clinical decision-making, in which the characteristics of

an individual patient are matched to a computerized clinical

knowledge base and patient-specific assessments or

recommendations are then presented to the clinician or the

patient for a decision”. If clinical knowledge base of the CDSS

“(...) is derived from and continually reflects the most up-to-

date evidence from the research literature and practice-based

sources.” We say that it is Evidence-Adaptive CDSS.

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 11/01/2026 19:04:58

UM
CS

Given large number of patient records it is the researcher

who discovers correlations and constructs hypotheses. After the

theory is statistically tested and published in a literature,

systematically developed statements designed to assist medical

practitioners and patients with decisions about appropriate

health-care for specific clinical circumstances [2] are known as

Clinical Practice Guidelines. Due to the fact that they are very

formal, the automation of a decision support can be

implemented and the computer can make use of patients'

clinical data, follow its own algorithm, and present the

information relevant to the current clinical situation [3]. In other

words, basing on the guidelines automated deductive reasoning

tools helps a therapist to provide evidence based diagnosis(4)

that is logically followed by a (6) therapy (see Figure 1).

Fig. 1 Knowledge and functionality involved in the use of of CDSSs

to support evidence- based medicine (after Sim et al. [1])

Literature and Clinical Practice Guidelines are the main
inputs for evidence-based CDSS, however for optimizing health
outcomes, local-practice analysis is often required too. Local
circumstances like the level of maturity, differences in
education, local policy or organizational problems can impact
quality of health-care even if made in evidence-based way. To
detect these problems it is required to have tools and methods
that can provide automatic (7) summarization of knowledge in
form of reports that retains the most important points), that after
interpretation can help to detect local-practice problems.
Moreover, summarization can result in general local practices
that will implement local practice-based evidence and ultimately
can give source material for a new version clinical practice
guideline. On figure 2 involved actors are shown with focus on
the Summarization use-case.

Fig. 2 Clinical data summarization use case

Summarization operates on Computer-Based Patient Record
database (PR-DB) and is governed by a set of tools that allows
the creation of a potentially unlimited number of machine-
generated, data-driven reports, which are calculated by a
machine as a response to queries. To create a query to PR-DB it
is required to have both: the ability to use language, and
knowledge about the structure of the underlying data, and as a
consequence, often summarization tools cannot be used directly
by the interested stakeholders. In other words: it is desired by the
stakeholder to have the ability to examine the data in a query-
result loop, where the query is tailored within an interactive
process that does not require any large prior learning and
preparation. This way of querying data is supported by Natural
Query Language (NQL).

The typical architecture of a NQL oriented solution consists
of three components: (1) an NQL-based user query interface that
is also responsible for the transformation of a natural language
query into a formal, machine-readable database query, (2) an
underlying database system that in case of CDSS, is PR-DB and
(3) a textual or graphical reporting component that presents the
results of database computations.

II. CLINICAL DECISION SUPPORT SYSTEM APPLICATION FOR

GIST CANCER TREATMENT

Cancer treatment is one of the area where CDSS

applications can help physicians performing evidence based

diagnosis and therapy due to strict recommendations and the

need for deciding if patients are eligible to enter clinical trial.

The Clinical Decision Support System application for Gist

Cancer (GIST-CDSS) is a pilot study devoted to

Gastrointestinal Stromal Tumors (GIST). Oncology is a field

where recommendations are well defined and studied and

where the quality of the clinical data needs to allow for more

complex analysis of these data. Strict formalization of the

domain knowledge produces consistent data that can be reused

for clinical studies.

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 11/01/2026 19:04:58

UM
CS

Fig. 3 CDSS

In the GIST-CDSS application (Figure 3) we have modelled

the oncological history of a patient to ensure that all the data

entering into the application is stored consistently. Furthermore,

we were able, together with the domain expert, to model

recommendations for the physician that are reasoned depending

on the form and on the patient history.

In this paper we present specific component of GIST-CDSS

that supports practice-based evidence due to the possibility of

automatic summarization via NQL.

The application is currently being tested in the Maria

Sklodowska-Curie Memorial Cancer Center and Institute of

Oncology in Warsaw.

A. Architecture of ADA GIST-CDSS component

Ask Data Anything (ADA) is a NQL system developed by

us. It is a general purpose web-browser based application but

after tight integrated within GIST-CDSS it becomes to be its

core component.

The ADA User Interface (UI) allows a NQL query to be

entered and executed with the support of a predictive editor.

The result-set of the query execution is presented on a wide

range of reports including tables, charts and maps (Figure 4).

Fig. 4 ADA screen-shot from query execution result-set presented on

a map.

III. THE ADA NQL QUERY LANGUAGE

The ADA NQL is a language developed by us to support the

users of our ADA system. It is general purpose language,

however it can be easily tailored to a specific domain (like here:

GIST oncology) with appropriate domain-specific ontology.

ADA uses On-Line Analytical Processing (OLAP) cube

approach together with a combination of formal logic and

statistical analysis to extract dimensions from the data and to

expose the dimensions through a natural query language based

interface. In this approach the ontology of a given domain and

the metadata coming from databases are merged together,

therefore it is tightly related to the data and ontology that the

user is currently using. The user can write a natural language

query while underneath, the query is matched to a more formal

CNL, which is finally translated to a query to the underlying

PR-DB.

A. The ADA NQL syntax

ADA NQL queries should follow grammar presented on

Figure 5 and if they do not stick to the grammar, parser first

tries to tailor them accordingly. Usually a query starts with an

operation (1) specification (sum, average,...) followed by

(possibly more than one) dimension(2) specification. The

dimension specification(s) is (are) the only required

grammatical part(s), all others are optional. The next part of a

query defines the subsetting(3) of the data represented by the

dimension, by which it is possible to filter the results. The

fourth part is the aggregation(4) which allows data to be

grouped in subsets. Finally, it is possible to specify the expected

visualization(5) type (that can be changed later-on).

Operation. An Operation (optional) is an action we can

perform on data to get the desired information: sum, average,

count, maximum and minimum.

Fig. 5 Syntax for ADA NQL

Dimension. Every action requires at-least one Dimension

specification to act on. A Dimension is assigned with a type

inferred by parsing a subset of the data together with the

information modelled in the supporting ontology. Currently, the

type supported by the ADA NQL language are: numerical,

date/time and text, for the types understood directly from the

data and: location/geolocation, latitude and longitude,

hierarchical (text dimension defined in the supporting

ontology that can have super concepts grouping the values (e.g.

infectious-disease for a column with diseases,...) and row

(dimensions that are defined in the supporting ontology and

represent data from multiple columns in a single row).

Operations and types are matched in the parser to check that

the query makes sense (e.g. “Sum Patient” where patient is a

dimension with Text values inside is not allowed but “Sum

Some-Row” where Some-Row is a row that contains a

numerical dimension is allowed).

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 11/01/2026 19:04:58

UM
CS

The query language allows also the use of:

• symbols - defined in the supporting ontology that are

evaluated to concepts, mainly used for subsetting and

grouping, described later

• literal values (e.g. Contract 123, Rome,...) used for

subsetting

these components (as for the dimensions) are dependent on

the dataset currently loaded.

Subsetting. The subsetting part of the query can be used to

define the filters that the user wants to apply to his/her query.

The general syntax is (Dimension, Relation, Data) where as

described before, the Relation and the Dimension are matched

by the dimension type (thus Dimension > 4 is allowed only for

Numerical dimensions). In this part of the query, it is also

possible to use “in” constraints. After the in constraint, we

expect an entity declared in the ontology (e.g. location “city”,

class of abstractions like “infectious disease”) or the content of

some column.

Example. Lets consider the following query: Average age of

patient that has-tumour-size greater-than 10 and is not a

diabetic and-or is a paracetamol-tolerant on a piechart. This

query contains the following complex expression: “patient that

has-tumour-size greater-than 10 and is not a diabetic and-or is

a paracetamol-tolerant” that evaluates into DL concept

expression: patient ⊓((∋have-tumour-size>10 ⊓ ¬diabetic)

⊔paracetamol-tolerant)

During reasoning process, that takes place in Ontology

Management System, we obtain set of instances of the

aforementioned complex concept expression: (Patient-

1,Patient-2,...) that are then injected into final SQL query:

Fig. 6 Subsettings Syntax

Select avg(age) from PR_DB

where fish in (Patient-1,Patient2,…)

Subsetting by date is very expressive, for example the user

can write: “from year 2015 to/until year 2016”, “from July 2015

to/until September 2015”, “from 1st of July 2015 to/until 23rd

of October 2015”, “from 07/01/2015 to/until 08/02/2015” or

“from 07/01/2015 12:23 to/until 08/02/2015 09:22”.

Aggregation. Aggregation is the action of grouping the

result using one of the Dimensions and/or entities which were

defined in the ontology; the syntax for aggregation is described

on Figure 7 with “by” together with dimension, location (i.e.

city, country), and time period (year, month, day, date).

Multiple aggregations are allowed (e.g. by country and by day).

Some aggregations require operations and others do not (e.g. by

day can be used with or without operations on the dimension,

while by country needs an operation).

Outputs. It is possible to specify in the query language the

output on which the query result should be shown. ADA

currently support following types of outputs: table, histogram,

stacked-bar, map, piechart, line or timeline. After the query

is parsed, the parser decides which of the outputs are allowed

depending on the type of dimensions that will be returned.

IV. EVALUATION

A. Advantages and disadvantages of ADA NQL

To evaluate our system, firstly we tried to place it in the

spectrum of well-known advantages and disadvantages of NQL

(see [4])

Fig. 7 Aggregation Syntax

1) Advantages

• Using ADA NQL does not require prior learning of a

database query language like SQL or SPARQL.

Following SQL query that uses embedded SPARQL

and is aimed to select average value of age of diabetic

patient from a given PR-DB in SQL+SPARQL has a

form of:
select avg(age)from PR_DB where

product in (

select distinct ?x {

?x rdf:type ns:patient.

?x rdf:type ns:diabetic

})

It is required to learn how to construct valid

SQL/SPARQL queries to execute them on top of the

given dataset. The same query in ADA NQL has a

form: “Average age by a patient in diabetics”. This

form do not require extensive prior learning - the user

writes it in English.

• ADA NQL is simple but expressive. E.g.:

form-based GUI presented on a left side of a Figure 8

contain multiple fields that need to be correctly filled

making the overall process of querying the database a

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 11/01/2026 19:04:58

UM
CS

complex task. To enter the same into single ADA NQL

query is much easier with predictive editor: entering

“Average age by patient in diabetics ...” and then

select one of the appearing options to continue the

query.

• Arbitrary complex queries can be not possible to be

expressed in form-based UI. E.g.: a left side of a

Figure 8 presents an UI setup for the application that

executes a query equivalent to the following ADA

NQL query: “Average age by patient in diabetics ...”

however with ADA NQL by extending this query with

additional “... and paracetamol-tolerant” we easily

can make the query arbitrary complex. Only generic,

Tree-View based, dynamic UI (presented on the right

side of Figure 8), that for complex queries can

potentially occupy more space that is available on any

computer screen allows one to specify arbitrary

complex queries.

Fig. 8 Example of form based UI for database queries

• ADA is fault-tolerant, providing the user with a result-

set together with an information about what is

“understood” as a query (right side of Figure 9). For

example the following erroneous ADA query: “avrage

agee inpatnts by municipality on map” is rewritten

into: “average age in patients by municipality on a

map”, prior being evaluated by the ADA engine.

2) Disadvantages

Now we explain how ADA NQL approach reduces common

NQL disadvantages.

• ADA provides many hints for an inexperienced user,

that allow her/him to understand a linguistic coverage

of the ADA NQL. One of them is a predictive editor

(left side of Figure 9). Predictive editor provides the

user with kind of rails during the query construction

process. It actively suggests continuation of the query

based on current position and context (loaded dataset

and ontology).

• ADA provides the user with an “understood” query

together with a result-set (right side of Figure 9). The

understood query is colorized and extended with

explanations to explain why some part has been added

or modified making easier to understand the obtained

result-set - and ultimately the problems within an

entered query. By comparing the result-set with

differences between “entered” and “understood” query

user is able to learning how to specify the “correct”

queries.

• ADA learning loop, described previously,

communicates to the user the abilities of the ADA so

even if the user ask questions that include judgements

and beliefs the “understood” query will explain

him/her that parts of the query were dropped.

B. NQL Parser Evaluation

We can distinguish three general approaches to the NQL:

1. keyword based, which allows for free writing similar

to the full-text search approach, but supports only very

basic queries,

2. patten based, which detects common query patterns

and generates responses based on a set of rules, and

therefore allows for more complex queries but limited

in the number of rules,

3. grammar based, which requires strict grammar and

syntax followed by a structural/predictive editor as it

is hard for the inexperienced user to enter a

grammatically valid query, but once entered it can be

very complex, deep and meaningful.

In each case the NQL query is rewritten into the underlying

database query language but each of the approaches has its

limits and advantages. Our ADA NQL combines all the

approaches together. The main characteristics of the NQL

parser we have built are: Our ADA NQL combines all the

approaches together. The main characteristics of the NQL

parser we have built are:

• it is robust (queries like : sum Patients or Patients

summed or sum of the best Patient I know of are parsed

in the same way),

• it tries to understand what the user meant by his/her

query (e.g. the query Age by country is automatically

translated to Sum Age by Country as we cannot make

aggregation without operations),

• it is flexible (the dictionary used to match the words in

the query is taken from the input data and from an

ontology),

• it is dedicated for making analytical queries to sets of

data.

• part of its content is defined in the data and another part

is defined in an ontology associated to the data.

So on the one hand we have defined a controlled natural

language with a strict syntax (see Section 3.1), while on the

other hand the parser tries to match the written query to the

controlled natural language query in all possible ways.

V. RELATED WORK

On-Line Analytical Processing (OLAP) cube approach, is

already used with CDSS. It provides decision-makers with

online access to analytical capabilities based on the idea of

dimensions. deals with dimensions and measurements and

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 11/01/2026 19:04:58

UM
CS

therefore it is suitable solution for summarization. Decision

support systems that use advanced technologies such as

(OLAP) and data mining to deliver advanced capabilities is

presented in [5]. In [6] integrated data warehousing, OLAP, and

data mining techniques are presented to support process of care-

givers and clinical managers. The possibilities of using data

warehousing and OLAP technologies in public health care in

general is presented in [7].

LUNAR [8] was the first NQL-database system that

allowed natural language to be used to query a database about

samples of moon rocks, however, nowadays this system is

considered to be very limited in linguistic capabilities [9].

RENDEZVOUS [10] was the system that implemented the

“man-in-the-loop” way of human-database interaction based on

a dialogue with a machine. Within the dialogue system it was

possible to clarify all the difficulties found during the initial

user input by helping the user to formulate queries. LADDER

[11] was a general purpose NQL-database that was able to be

connected to different underlying DBs, but at the same time it

used grammars that were application-dependent making the

system hardly portable. CHAT-80 [12] transformed English

into Prolog expressions that were then evaluated against an

existing database. CHAT-80 was a foundation for other

experimental systems e.g.: MASQUE [13] and PRECISE [14].

ACE - Attempto Controlled English [15] is a Prolog-based,

widely adopted general purpose language that allows a CNL-

based NQL to be built. CNLs like ACE, being very precise and

expressive require, at the same time, the use of a predictive

editor that forms a kind of rails on which the user can write a

syntactically correct sentence.

Also, modern NQLs are configurable with certain domain-

specific ontologies, making the NQL core domain-agnostic. In

the {AskMe* } system [16] an ontology is generated when the

system is connected to a database. The generator processes the

schema of a given database and generates an ontology that

contains knowledge about the domain, properties, relationships

and constraints that already exists in the given database. The

ontology is then used to automatically generate a specific

parser. Another example of a modern approach is SWSNL [17].

It is a semantic search engine equipped with a natural language

interface. The user input in natural language is analyzed by the

linguistic component and produces its formal representation.

The linguistic component combines a few Natural Language

Preprocessing (NLP) technologies like: Named Entity

Recognition (NER) and semantic analysis. As a result, a

SPARQL [18] query is generated and executed.

VI. CONCLUSION AND FUTURE WORK

We implemented NQL oriented summarization solution as

a part of GIST-CDSS. We used general purpose ADA solution

and tailored it to the needs of oncology-specific CDSS with

specific ontology. ADA ontologies contain both: the knowledge

about the configuration as well as the general knowledge that

can be easily reused. The main query language is ADA NQL -

the query language that accepts a large spectrum of (even

erroneous) natural queries. Obtained summarization system is

currently being tested in the Maria Sklodowska-Curie

Memorial Cancer Center and Institute of Oncology in Warsaw.

VII. CONFLICT OF INTEREST

All authors work for Cognitum, the company behind the

Ontorion Server, Fluent Editor and OCNL.

VIII. ACKNOWLEDGMENTS

This research was financially supported by The Foundation

for Polish Science - Parent Bridge Grant.

REFERENCES

[1] I. Sim, P. Gorman, R. A. Greenes, R. B. Haynes, B. Kaplan,

H. Lehmann, P. C. Tang, Clinical Decision Support Systems

for the Practice of Evidence-based Medicine, Journal of the

American Medical Informatics Association : JAMIA 8 (6)

(2001) 527-534. URL

http://www.jamia.org/cgi/content/abstract/8/6/527?ijkey=6

4927082e12701fb37247928059d7a6b9eb97ac9

[2] M. J. Field, K. N. Lohr, Clinical Practice Guidelines:

Directions for a New Program, The National Academies

Press, Washington, DC, 1990. doi:10.17226/1626. URL

http://www.nap.edu/catalog/1626/clinical-practice-

guidelines-directions-for-a-new-program

[3] D. C. Stahl, L. Rouse, D. Ko, J. C. Niland, Gdsi: a web-

based decision support system to facilitate the eficient and

effective use of clinical practice guidelines, in: System

Sciences, 2004. Proceedings of the 37th Annual Hawaii

International Conference on, 2004, pp. 10 pp.{.

doi:10.1109/HICSS.2004.1265377.

[4] I. Androutsopoulos, G. D. Ritchie, P. Thanisch, Natural

language interfaces to databases - an introduction, CoRR

cmp-lg/9503016. URL http://arxiv.org/abs/cmp-lg/9503016

[5] S. Palaniappan, C. S. Ling, Clinical decision support using

olap with data mining, International Journal of Computer

Science and Network Security 8 (9) (2008) 290{296.

[6] N. Stolba, A. M. Tjoa, The relevance of data warehousing

and data mining in the field of evidence-based medicine to

support healthcare decision making (2005).

[7] H. N. Khraibet, A. H. Mousa, A. Bakar, M. Shahbani,

Intelligent Iraqi Health System (IIHS) using Online

Analytical Process (OLAP) model.

[8] W. Woods, R. Kaplan, B. Nash-Webber, The Lunar

Sciences Natural Language Information System: Final

Report, BBN report, Bolt Beranek and Newman, 1972. URL

https://books.google.pl/books?id=RhuEMwEACAAJ

[9] M. N. Nihalani, S. Silakari, M. Motwani, Natural language

interface for database: a brief review, IJCSI International

Journal of Computer Science Issues 8 (2) (2011) 600{608.

[10] E. F. Codd, Seven steps to rendezvous with the casual

user., in: IFIPWorking Conference Data Base Management,

1974, pp. 179{200, iBM Research Report RJ 1333, San

Jose, California. URL http://dblp.uni-

trier.de/db/conf/ds/dbm74.html#Codd74

[11] G. G. Hendrix, E. D. Sacerdoti, D. Sagalowicz, J. Slocum,

Developing a natural language interface to complex data,

ACM Trans. Database Syst. 3 (2) (1978) 105{147.

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 11/01/2026 19:04:58

UM
CS

doi:10.1145/320251.320253. URL

http://doi.acm.org/10.1145/320251.320253

[12] D. H. D. Warren, F. C. N. Pereira, An efficient easily

adaptable system for interpreting natural language queries,

Comput. Linguist. 8 (3-4) (1982) 110{122. URL

http://dl.acm.org/citation.cfm?id=972942.972944

[13] I. Androutsopoulos, G. Ritchie, P. Thanisch, Masque/sql -

an efficient and portable natural language query interface

for relational databases, Database technical paper,

Department of AI, University of Edinburgh.

[14] A.-M. Popescu, A. Armanasu, O. Etzioni, D. Ko, A. Yates,

Modern natural language interfaces to databases:

Composing statistical parsing with semantic tractability, in:

Proceedings of the 20th International Conference on

Computational Linguistics, COLING '04, Association for

Computational Linguistics, Stroudsburg, PA, USA, 2004.

doi:10.3115/1220355.1220376.URL

http://dx.doi.org/10.3115/1220355.1220376

[15] N. E. Fuchs, U. Schwertel, R. Schwitter, Attempto

controlled English – not just another logic specification

language, in: LOPSTR '98: Proceedings of the 8th

International Workshop on Logic Programming Synthesis

and Transformation, Springer-Verlag, London, UK, 1990,

pp. 1{20.

[16] M. Llopis, A. Ferrandez, How to make a natural language

interface to query databases accessible to everyone: An

example., Computer Standards & Interfaces 35 (5) (2013)

470{481. URL http://dblp.uni-

trier.de/db/journals/csi/csi35.html#LlopisF13

[17] I. Habernal, M. Konopik, Swsnl: Semantic web search

using natural language., Expert Syst. Appl. 40 (9) (2013)

3649{3664. URL http://dblp.uni-

trier.de/db/journals/eswa/eswa40.html#HabernalK13

[18] S. Harris, A. Seaborne, “Sparql 1.1 query language”,

http://www.w3.org/TR/sparql11-query/, accessed 21st

September 2015 (2013).

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 11/01/2026 19:04:58

UM
CS

Pow
er

ed
 b

y T
CPDF (w

ww.tc
pd

f.o
rg

)

http://www.tcpdf.org

