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Morphological and physiological responses
of some halophytes to salinity stress

ABSTRACT

A pot experiment was conducted to examine whether the morphological and physiological
characteristics of some halophytes may be affected by salt stress. For this purpose, a factorial
experiment based on randomized complete block design was carried out with three replications.
The treatments were some halophytes (Salicornia europaea, Atriplex leucoclada, and Kochia
scoparia) and salinity stress levels [Electrical conductivity 0 (Hoagland’s solution), Hoagland’s
solution consisting of 100, 200, 300 and 500 mM NaCl]. Among the halophytes tested, Salicornia
europaea had significantly higher shoot and root of dry matters compared to the other halophytes in
all salt treatments. Salinity stress resulted in an increase in photosynthetic pigments up to 200 mM
and thereafter, it decreased in all of the studied plants. Photosynthetic pigments, ranked in a
descending order, were high in Kochia scoparia, Salicornia europaea, and Atriplex leucoclada. In
addition, salinity stress led to an enhancement in malondialdehyde (MDA) and H,0O,. The tolerance
of Salicornia europaea under high salinity stress was associated with low MDA and H,O, contents
as well as high contents of photosynthetic pigments. The shoot and root Na* increased considerably
by augmenting the salinity levels in all halophytic plants; however, there was a significant difference
among halophytes at higher salinity levels. The shoot K* decreased by increasing the salinity
levels, but K* partitioning pattern varied among the halophytes. Under saline conditions, the shoot
and root Na"/K" ratio of all halophytes grew. The highest and the lowest of Na* were observed in
Salicornia europaea and Kochia scoparia, respectively. Thus, the Na'/K* ratio could be considered
as an indicator of salt evaluation. Nitrogen, protein content, dry matter digestibility (DMD), and
metabolizable energy (ME) were high in Salicornia europaea plants in comparison to other plants
at 200-500 mM salinity levels; in contrast, acid detergent fiber (ADF) and netural detergent fiber
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(NDF) were low. According to the results of this study, the tolerance of halophytes towards NaCl is
possibly due to the differences in damage from reactive oxygen species (ROS), especially H,0,, and
toxicity to metabolism Na'.

Keywords: salinity stress, halophytes, morphological parameters, physiological parameters

INTRODUCTION

Salt tolerance is very complex in the majority of plant species, because salt stress is known to
induce tissue dehydration, ion toxicity, nutritional imbalance, or a combination of these effects (21).
Approximately one billion hectares of lands in the whole world are saline, constituting a serious
threat to farmers (13). Increased soil salinity is one of the natural detrimental factors that have a
negative effect on plant growth and development (12). Plants can be divided into two broad groups
on the basis of their response to high concentrations of salts. Halophytes are native to saline soils
and complete their life cycles in that environment. Glycophytes or nonhalophytes, are not able to
resist salts to the same degree as the halophytes do (37). With an increasing amount of arable land
undergoing salinization (36) accompanied by increasing food demands from the growing human
population, the need to develop salt-tolerant crops and to identify the degree of salinity tolerance
within crops is becoming more important. It has been reported that plant growth, metabolism and
nutrient uptake are adversely affected under saline conditions (32).

Generally, two types of mechanism of salt tolerance have been identified in higher plants (21).
In the first mechanism, the growing medium salinity induces specific ion effects on plants, and the
plants, in turn, respond by excluding toxic ions such as Na“ and CI- from the leaves in different ways.
In the second mechanism, the ions absorbed by cells are accumulated in the vacuoles. However, the
patterns of ion accumulation have been successfully used in discriminating between salt-tolerant and
salt-sensitive plants (21).

Salinity stress causes extensive crop losses in many parts of the world due to the lack of salt
tolerance in major field crops. Enhancing tolerance to salinity in crops will be an important goal of
plant breeders in future to ensure food supply for the growing world population (12). A wide range
of variation in the level of salt tolerance found in halophytes clearly demonstrates the genetic basis
of salt tolerance. Although it is widely recognized that the genetic and physiological basis of salt
tolerance in plants is inherently complex owing to the involvement of multigene controlled traits
or mechanisms, the lack of a thorough understanding of these mechanisms and their contribution
toward salt tolerance is a major limitation to developing salt-tolerant plants (2).

An improved osmotic adjustment is a major factor in growth stimulation of halophytes by high
Na supply. Growth responses of halophytes to Na under saline conditions reflect the need for an
osmoticum during osmotic adjustment to salinity stress. Many halophytes osmotically compensate
for high external osmotic potential by accumulating Na salts, often NaCl from the environment.
Growth stimulation by Na is particularly apparent in the Chenopodiaceae and among nonchenopods
(23).

Iran, like other developing countries, is situated in the arid and semi-arid areas and is faced with a
series of problems, including limited natural resources, poor water quality, soil affected with salinity,
and food shortages. Thus, extensive research, particularly into the management of soils affected
by salinity, must be performed in order to solve these problems. In the cultivation of halophytes,
it appears that management practices on soils are ideal, especially when there is insufficient good-
quality water. Halophyte has been highly regarded by researchers in many countries (3, 4). A number
of plant species have been selected for their production or potential supply when they are irrigated
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with saline water and seawater (16, 18). Some halophyte species have been domesticated as forage
plants (5, 26). Shoots of Salicornia europaea bigellovi, Sesuvium portulacastrum, Chenopodium
album, Portulaca oleracea, and Suaeda maritima are utilized for vegetables, salads and pickles
in various parts of the country (10). The experiment was aimed at investigating the number of the
reactions of halophytic plants in soils affected by salinity as a result of using poor-quality water in
order to overcome desertification and utilization of soil and too salty water.

MATERIALS AND METHODS
PLANT MATERIALS AND TREATMENTS

The seeds of studied halophytes (Salicornia europaea, Atriplex leucoclada and Kochia
scoparia) were obtained from seed and plant Agricultural Research Institute Karaj, Iran. All seed
samples were surface sterilized with 10% sodium hypochlorite solution for 5 min and washed three
times with distilled water.

In a pot experiment, halophytes were exposed to NaCl salinity, using a complete blocks
randomized design with factorial arrangement and each treatment was replicated 3 times. Plants
were grown in pots (with 25 cm diameter) containing perlit. Ten seeds were sown in each pot.
After germination the seedlings were thinned to three of uniform size per pot. Supplementary
light was provided in the greenhouse for 16 h per day. The daytime and nighttime temperatures of
the greenhouse were 24.5 and 14.8°C, respectively. Irrigation was made using 6 saline solutions
(control, 100, 200, 300 and 500 mM) in a ratio of 1:1 of NaCl/CaCl, prepared in half-strength
Hoagland solution. The NaCl concentrations in Hoagland’s solution (25) were used to raise the
plants following sowing. The salt treatments were begun following sowing.

All measurements were made at vegetative stage after 42 days of salt treatments. Plants were
separated into shoots and roots and washed with distillated deionised water and weighed after being
shade-dried. Some samples were frozen in liquid nitrogen for 2 min, then stored at -70°C for all
measurements such as plastid pigments, MDA and H,O, contents.

DETERMINATION OF NA AND K IONS

Ion Na and K measurements were taken from the 2 N chloride acid extract of the samples that
had been burned at 600 °C for 4 h, using a flame photometer (PF5 Carl Ziess Germany model) (31).

DETERMINATION OF H,0, CONTENT

Hydrogen peroxide content in leaves were determined according to Velikova et al. (2000). Flag
leaf tissues (0.07 g) were homogenized in an ice bath with 5 ml of 0.1% (w/v) trichloroacetic acid
(TCA). The homogenate was centrifuged at 12,000g for 15 min and 0.5 ml of the supernatant was
added to 0.5 ml of 10 mm potassium phosphate buffer (pH 7.0) and 1 ml of 1 m KI. The absorbance
of the supernatant was measured at 390 nm (38).

DETERMINATION OF THE MDA CONTENT

For the measurements of lipid peroxidation in leaves, the thiobarbituric acid (TBA) test, which
determines MDA as an end product of lipid peroxidation (24), was used. An aliquot (0.07 g) of flag
leaves was homogenized in 5 ml of 0.1% (w/v) TCA solution. The homogenate was centrifuged
at 12,000 g for 15 min and 0.5 ml of the supernatant was added to 1 ml of 0.5% (w/v) TBA in
20% TCA. The mixture was incubated in boiling water for 30 min, and the reaction was stopped
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by placing the reaction tubes in an ice bath. Then the samples were centrifuged at 10,000 g for
5 min, and the absorbance of the supernatant was measured at 532 nm, subtracting the value for non-
specific absorption at 600 nm. The amount of MDA-TBA complex (red pigment) was calculated
from the extinction coefficient 155 mM™! cm'.

PIGMENTS DETERMINATION

Chlorophyll (Chl) and carotenoids (Car) were estimated by extracting the leaf material in 80%
acetone. Absorbances were recorded at 663, 645 and 470 nm (29). Photosynthetic pigment contents
were calculated from the equations as described by Lichtenthaler & Wellburn (29).

FORAGE QUALITY

Crude protein (CP %) of the shade-dried samples was determined using the Kjeldahl technique
(1). Acid detergent Fiber (ADF) and Neutral Detergent Fiber (NDF) were determined according to
AOAC (1980) method. Dry matter digestibility (DMD) (34) was estimated by the formula DMD %
=83.58- 0.824 ADF % +2.626 N % suggested by Oddy et al. (34). Metabolizable energy (ME) was
predicted with the equation ME = 0.17 DMD % — 2 suggested by A.O.A.C. (1).

STATISTICAL ANALYSIS

The data were analyzed by SAS statistical package and the mean comparisons were made
following Duncan’s Multiple Range Test at P = 0.05 by MSTATC (version 2.10, Inc, Michigan state
university).

RESULTS AND DISCUSSION

GROWTH PARAMETERS

Analysis of variance (ANOVA) indicated that the shoot and the root dry
matter (DM) were significantly (P<0.05) altered under the treatments employed
(Table 1). However, the maximum shoot and root DM were observed in plants
exposed to 100 and 200 mM of NacCl, respectively (Table 2). By increasing the
salinity stress (200500 mM), the shoot and the root DM decreased in the plants
studied, but this reduction was much less in Salicornia europaea. In other words,
the exposure to 400 and 500 mM NaCl severely decreased the root and the shoot
DM, respectively, except for Salicornia europaea which could grow at 500 mM,
and all Atriplex leucoclada plants died under 500 mM salt stress. The results dem-
onstrated that the growth of the plants studied was stimulated by increasing salt
concentrations, and a significant difference was observed between the three plants
genus. Similarly, it was reported that the effect of salinity on growth varies among
halophytes (14), and dry mass is stimulated under salinity stress (20). Our find-
ings also confirmed that the overall growth and development of halophytes plants
decreased as the salt concentrations increased, which, as previously mentioned,
could be due to the reduction of water potential that is responsible for plant devel-
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opment. Such growth stimulation at moderate salinity in halophytes may be attrib-
uted to the improvement in shoot osmotic status as a result of increased ion uptake
(33). Reduced growth at high salinities is probably associated with the reduced
turgor and the high energy cost of massive salt secretion and osmoregulation.

PHOTOSYNTHETIC PIGMENTS

Data analysis showed that there were significant differences in the plastid
pigments (chlorophyll a, chlorophyll b, total chlorophyll and carotenoids) under
salinity stress, type of halophytes and their interactions (Table 1). The effective-
ness of the process of salt concentrations in various halophytes was different in
each halophyte. The highest content of chlorophyll (chlorophyll a, b, and total
chlorophyll) was observed in Salicornia europaea with 100 mM NacCl. In all of
the three halophytes, the content of chlorophyll decreased by increasing salin-
ity stress (Table 2). It appears that reduced photosynthesis and the subsequent
decreased growth under stress conditions, generally result from the reduction in
chlorophyll content. The main reason for the decline in chlorophyll content, espe-
cially under severe stress conditions, may be the loss of the activity of enzymes
involved in chlorophyll synthesis (ALA-Hydrogenase) (35). In our present study,
the plants exposed to lower concentrations of salinity (100 mM) had an improve-
ment in their photosynthetic pigment contents when compared to the other con-
centrations applied (Table 2). Furthermore, the lowest content of carotenoid was
observed in 500 mM salinity stress. In contrast, the carotenoid content in 100 mM
salinity stress was more than that in the control, which was probably due to the
antioxidant system induced by low concentrations of salt. This observation agrees
well with the findings reported by Ashraf et al. (2009) who stated that carotenoid
has ROS scavenging capability under salt stress (6).

MALONDIALDEHYDE (MDA) AND HYDROGEN PEROXIDE (H,0,)

There was a noticeable difference between halophyte types in MDA and
H,O, contents under salinity stress (Table 1). By increasing the salt concentra-
tions, MDA and H,O, levels increased in all three halophytes (Table 2). The mini-
mum and the maximum contents of MDA were observed in the plants exposed
to salt concentrations at 100 mM in Salicornia europaea and 500 mM in Kochia
scoparia, respectively (Table 2). A trend similar to MDA changes was found for
H,0, accumulation under applied treatments. The level of H,O, in Salicornia eu-
ropaea plants exposed to 100 mM was lower than that of other plants; therefore,
lipid peroxidation was less pronounced in such plants (Table 2). As can be seen,
MDA is produced through lipid peroxidation and salt stress by inducing oxidative
stress and production of ROS, leading to the oxidation of proteins and lipids, and
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Table 1. Analysis of variance (ANOVA) for studied traits in halophytic plants under salinity
stress

Mean squares for source of variation
. Factor a g
Traits Block (Salinity (Hl;f(f;(l)l;?es) Inte;i(l:)tlon Error
stress)
Root dry weight 0.0003 ™ 0.0863™ 0.8430™ 0.0161™ 0.0005
Shoot dry weight 0.0421 = 0.6947" 0.0375™ 0.0510™ 0.0041
Chlorophyll a 0.0022 ™ 0.05" 0.017" 0.004™ 0.0018
Chlorophyll b 0.0007 ™ 0.026™ 0.025™ 0.003™ 0.0017
Total chlorophyll 0.0035 0.14™ 0.077" 0.01™ 0.0044
Carotenoid 0.22 4.24™ 7.10™ 027" 0.23
Shoot MDA contents 0.07 15.62™ 0.48™ 8.30™ 0.505
Shoot H,O, contents 0.12 16.98™ 7.53™ 11.07 0.23
Root Na* 3.83 1 282.11™ 44217 180.43™ 1.24
Shoot Na* 92.28 5220.99™ 8406.76™ 3311.00™ 50.76
Root K* 3.54 1 62.01" 36.52™ 8.52" 0.55
Shoot K* 3.60 ™ 473.04™ 304.30™ 70.59" 4.18
Root Na'/K* ratio 1.51m 26.30™ 33.18™ 16.50™ 0.50
Shoot Na"/K* ratio 6 99.41™ 240.09" 78.92™ 1.57
N% 0.0005 ™ 0.86™ 0.16™ 0.034™ 0.0007
CP% 0.02 ™ 33.82" 6.42" 13.30™ 0.029
ADF 0.17 83.90™ 152.59™ 195.39™ 0.14
NDF 0.23 305.02™ 564.73™ 555.63™ 0.06
DMD 0.11m 1138.40™ 1163.29™ 744.67" 0.10
ME 0.0033 23.56™ 29.36™ 14.03™ 0.002

*, % Significantly different at the 5 and 1% probability level, respectively, ™ not significant.

subsequent destruction of membrane structure (17). Moreover, it is likely that
the accumulation of H O, is caused by the lack of superoxide dismutase activity
and its isozymes under salt stress. However, H,O, can improve the tolerance of
plants towards salt stress, because it is an active oxygen species, which is widely
generated in many biological systems and mediates various physiological and bio-
chemical processes in plants (28).

IONS ACCUMULATION

The root and the shoot Na® concentration increased considerably in all halo-
phytes with the external salt concentration, but the response of halophyte types
varied in this regard (Table 1). Increased salt concentration induced the accumu-
lation of Na* in the root and the shoot of all halophytes; however, this increase
was higher in Atriplex leucoclada, Salicornia europaea and Kochia scoparia, in a
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descending order (Table 2). Organic compatibles, whose function is to balance the
osmotic potential in the vacuole due to the accumulated Na* and CI ions, are syn-
thesized by the halophytes with differences in their carbon and nitrogen costs (15).
In other words, Atriplex leucoclada plants could accumulate more Na* in the root
and the shoot by increasing salinity stress (Table 2). When the amount of sodium
increases in the root zone, this may lead to changes in cell osmotic pressure, and,
plasmolysis besides the reduction in absorption of selective elements (19). Our
results showed that although Atriplex leucoclada had lower biomass production,
it accumulated more shoot Na*concentration and, hence, maintained considerably
higher shoot Na*/K* ratios as compared with the other halophytes (Table 2). The
findings of this research_corresponded with those reported by Khan et al. (2000)
about Atriplex (27).

According to the results, salt concentration, halophyte types and their interac-
tions had significant effects on the content of root and shoot potassium (Table 1).
Decreased accumulation of potassium in the root and the shoot was observed along
with increased salt concentration in all halophytes. The maximum accumulation
of potassium in the root and the shoot was related to Atriplex leucoclada without
salt treatment (Table 2). Maintaining high levels of potassium is considered as the
tolerance mechanism towards saline conditions (11), because potassium plays an
important role in maintaining the water balance in plants and the continuation of
the activity of enzymes (7). Under salt stress, sodium disrupts potassium uptake,
thus reducing the accumulation of potassium.

FORAGE QUALITY PARAMETERS

The evaluated factors had significant impacts on nitrogen, protein content,
DMD, and ME (Table 1). The highest nitrogen and protein contents were ob-
served in Atriplex leucoclada, Salicornia europaea and Kochia scoparia plants
exposed to salinity stress, respectively (Table 2). At 200-500 mM salinity stress
levels, nitrogen, protein content, DMD, and ME were higher in Salicornia euro-
paea plants in comparison to other plants (Table 2). The results indicated that high
salinity induced a reduction in nitrogen uptake in Atriplex leucoclada and Kochia
scoparia halophytes, so that the highest nitrogen in the above-mentioned plants
was observed in low salinity levels (Table 2). The nitrogen element is an impor-
tant nutrient whose uptake is disrupted by the presence of salt. Increasing the salt
concentration in the root zone leads to losses of root hairs, thus negatively affect-
ing nitrogen metabolism (9). Under salt stress, the reduction in protein content can
be due to the degradation of proteins and the lack of their re-synthesis (22).

ADF and NDF were significantly (P < 0.01) affected by the experimental
treatments (Table 1). The highest values of ADF and NDF (Table 2) were obtained
in high salinity stress in all halophytes, but these values were lower in Salicornia
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europaea plants in comparison to other plants (Table 2). In other words, Sali-
cornia europaea plants under high salinity have good forage quality and can be
utilized for planting and sustainable development should be considered in saline
areas. It has been demonstrated that among various common chemical determina-
tions of plant materials; CP, DMD, and ME are mainly considered for evaluation
of forage quality. In our study, crude protein content decreased with increasing
salinity stress, whereas ADF and NDF of whole shoot increased under salinity
stress. In other words, increasing of salinity stress caused a significant decrease
in forage quality. These results may be due to a considerable change of lignin
content. Also, more of tolerant plants to salt include high contents of non-protein
nitrogen. For example, Benjamin et al. (8) reported that 42% of the nitrogen in
Atriplex barclayana is non-protein nitrogen. This nitrogen will only be available
for conversion to microbial protein in the rumen if a good supply of me-
tabolisable energy is available or if added to a protein deficient feed (30).

CONCLUSIONS

The results of our study suggested that the growth of the halophytes studied is
differently inhibited at high salinity. Reduced growth at high salinities is probably
associated with insufficient osmoregulation and reduced turgor. The halophytes
studied accumulate Na* in their root and shoot with different concentrations. Our
findings demonstrated that Salicornia europaea plants could manage Na* in their
root and shoot by increasing salinity stress, in contrast, Atriplex leucoclada plants
could accumulate more Na* in their root and shoot at high salinity stress, and cell
death may occur. The effect of salinity stress on growth and other parameters
could result from the negative impact of salinity on photosynthesis pigments and
imbalance nutrition that arise from toxicity to metabolism Na"and damage from
reactive oxygen species (ROS). Furthermore, Nitrogen, protein content, DMD,
and ME were high in Salicornia europaea plants in comparison to other plants at
200-500 mM salinity levels. Our results indicated that regardless of the reduction
in growth parameters, Salicornia europaea is a valuable candidate crop to be em-
ployed under high salinity, where other traditional crops cannot grow or produce
under high levels of salinity.
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