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1Abstract. Active surface reflectance in a UV/VIS/NIR range deserve special attention among 
remote sensing techniques due to the potential of information it carries. Data are diversified in 
terms of spatial, spectral and temporal resolution, resulting in differences in data comparison and 
collection of material that may be redundant. The aim of the study was to assess whether the use 
of high-resolution data in analysis of an intensively used meadow is justified. 116 images from 
Planet sensor were analysed, registered from 2016 to 2019. NDVI, EVI and GLI were calculated 
for all of the terms. Resampling of data was carried out, with the use of 30 m grid, prepared on the 
basis of 3 m Planet pixel. Data with different resolution was compared. Seasonal course of values 
was similar in all cases, values of chosen deciles were nearly the same, however, differences in 
minimum and maximum values were noted. It was concluded that the use of high-resolution data 
is not advisable in the context of the spatial variability of seasonal vegetation indices in the case of 
a terrain with homogeneous land cover. Values of structurally simplified indices are less homoge-
neous than that of indicators consisting of a greater number of modifying factors.
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INTRODUCTION

Remote sensing techniques are an extremely important source of data pro-
viding information used in environmental protection (Melesse et al. 2007), agri-
culture (Palanisamy et al. 2019), spatial planning, and many other fields of sci-
ence (Heiskanen et al. 2017).

Due to their potential, data on active surface reflectance in a wide spectrum 
range from UV through VIS to NIR deserve special attention among many types 
of data. They are especially valuable for analyses of vegetation cover (Teillet et 
al. 1997, Purevdorj et al. 1998).

Analyses of the properties of vegetation most often involve calculation of 
the ratios of reflected signals at different electromagnetic wavelengths, which is 
the basis for calculation of the so-called reflectance indices, often called “plant 
indices” due to their most common application (Huete 1988, Bannari et al. 
1995, Liu K. et al. 2020).

Data are acquired with the use of various sensors differing in their spatial 
and spectral resolutions (Sharma et al. 2020, Kim et al. 2020). Obviously, data 
with the highest spatial resolution have a local character. The use of airplanes or 
unmanned aerial vehicles facilitates acquisition of data with pixels in the range 
of several millimetres; however, besides the local scale, this poses a problem 
with processing large volumes of data. Satellite sensors facilitate simultaneous 
recording of scenes with a surface area of a few to several dozen square kilo-
metres, but their resolution ranges from a few to several dozen meters (Mancino 
et al. 2020). 

The spectral resolution is associated with variable image recording. Images 
in the visible RGB spectrum captured by inexpensive sensors with wide spec-
tral channels available in various scales and mounted in various platforms are 
the most common (Barrero and Perdomo 2018, Marín et al. 2020). Multispec-
tral imaging techniques, which combine near-infrared radiation data with the 
basic channels, are becoming increasingly popular (Fawcett et al. 2020). Select-
ed sensors record the image of the active surface in more than several tens of 
channels (hyperspectral imaging) with a varying number of registered channels 
and total recording range. The most common cameras recording radiation in the 
400–1,000 nm range are widely used in many branches of science (Thenkabail 
et al. 2019).

Remote sensing data also vary in terms of temporal resolution – satellite sen-
sors record the same area in specific time sequences usually associated with the 
position of the sun above the horizon. Data obtained in this way are comparable 
with each other, as the angle of incidence of sunrays on individual days is similar.

In recent years, research has been undertaken to assess the possibility of 
comparison of data with different spectral resolutions by means of resampling 
thereof, which is defined as generation of information from different sources in 
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the same spatial resolution and uniform geometry. There are also attempts to 
find a compromise between the spectral resolution, spatial resolution, and data 
retrieval costs associated with data extraction and acquisition (Caras et al. 2017, 
Prey and Schmidhalter 2019, Lyons et al. 2018).

The aim of the present study was to fill the gap in determination of a spatial 
resolution that is sufficient for vegetation analysis of approx. 40-ha intensively 
used meadows. The application of appropriate methods will reduce the costs of 
retrieval of data for various purposes in the future. Limitation of the resolution 
also facilitates synthesis of data and reduction of errors associated with too high 
resolution.

The objective of the study was to assess whether the use of high-resolution 
data in analysis of vegetation in an intensively used meadow with a homogene-
ous cover is advisable or whether it generates a large amount of redundant infor-
mation. An additional goal was to compare different methods of data resampling 
in a multi-season scale.

MATERIALS AND METHODS

The study was carried out in an object located in Andrzejów. It is an inten-
sively used meadow with a homogeneous species composition located in Pole-
sie Lubelskie, approx. 5 km from Urszulin (Fig. 1). Its substrate is a large peat 
bog subjected to drainage in the last century, which was intended to lower the 
groundwater table and convert the land into permanent grassland. Currently, the 
soil cover of the area consists of thick muck soils formed on fens and transition-
al peat bogs.

Fig. 1. Location of research area
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A set of data provided by the Planet sensor (Planet Team 2020) registered 
between August 19, 2016 and April 19, 2019 was used for the study. The data 
were selected based on the assumption of a cloud cover over the analysed object 
as low as <10% and land cover >90%. Satellite data registered between 9:00 
and 10:00 UTC were used.

A grid was prepared for further analysis; the mesh size was based on the 
imaging pixel (3 m), and the total grid size was 1,050 m × 1,050 m (Fig. 2). To 
compare data with different resolutions, a 30-m grid was superimposed on the 
3-m grid (one pixel contained 100 basic pixels). After verification of the data, 
116 images were finally analysed (Table 1).

Fig. 2. Scheme of the study; (A) basic grid of 30-m pixels on the background of the orthopho-
tomap, (B) division of 30-m pixel into 100 smaller 3-m pixels

Indicators EVI, GLI, and NDVI were calculated for each of the terms. 
Average, maximum, and minimum values as well as variability were calculated 
for each term and each pixel.

Next, data resampling (3-m pixel) was carried out using three methods 
implemented in the Arc-Gis environment: i) NEAREST – nearest neighbour, 
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which minimizes changes to pixel values   since no new values   are created, ii) 
BILINEAR – calculating the value of each pixel by averaging (weighting for 
distance) the values of the surrounding four pixels, and iii) CUBIC – calculating 
the value of each pixel by fitting a smooth curve based on the surrounding 16 
pixels (Hall and Meyer 1976, Press et al. 1992). Additionally, the values of 100 
pixels contained within one large pixel were averaged arithmetically.

Table 1. List of images used in the research

Season Number of scenes
Summer 2016 4
Autumn 2016 1
Winter 2017 1
Spring 2017 8
Summer 2017 13
Autumn 2017 6
Winter 2018 1
Spring 2018 32
Summer 2018 24
Autumn 2018 14
Winter 2019 1
Spring 2019 9

The data in the original resolution (3 m) were compared with the resampled 
(30 m) data using the nearest-neighbour method. Differences between the max-
imum and minimum values were calculated for each of the terms and the two 
resolutions, and the maximum and minimum values as well as the value of the 
1st, 5th, and 9th decile for both spatial resolutions were compiled.

Next, only a part of the scene with the homogeneous meadow was sub-
jected to detailed analysis to check the effect of the surface homogeneity on 
the results. Nine 30-m pixels characterizing the highly homogenous meadow 
were chosen. Next, ten 3-m pixels were selected randomly within each of them 
and statistical analysis (R2 and Person correlation) of the multi-season values of 
NDVI, EVI, and GLI was carried out.

RESULTS

The examined area showed spatial diversity of values of particular indica-
tors (Fig. 3). 

The differences in the maximum NDVI values recorded for the larger and 
smaller pixel were relatively small and did not exceed 15% in any of the terms, 
with an average of 3% (Fig. 4). Substantially greater variability can be observed 
in the minimum values; in particular, the values recorded in the autumn of 2018 
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and in the winter of 2019 were drastically different from the others (681 and 
257% difference). When these values were excluded, the differences reached up 
to 63%, with a mean of 13%. 

Fig. 3. An example picture of spatial variability of vegetation indices – NDVI, 12.08.2018;  
(a) 30 m resolution; (b) 3 m resolution

Fig. 4. Percent differences between the maximum and minimum values of EVI and NDVI at 
different spatial resolutions in a multi-season aspect

The differences in the maximum EVI value exhibited distinct multi-sea-
son variability, with significant differences in the early spring of 2019, autumn 
2018, spring 2018, and summer 2016. The fluctuations reached up to 31%, with 
a mean of 4%. In the case of the minimum values, drastic differences were noted 
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in the same terms as in the case of NDVI (-158% to 712%). After exclusion of 
the extreme values, the differences reached 67%, with a mean of 11%.

The largest discrepancy between the values of the large and small pixels was 
exhibited by GLI (Fig. 5). In the case of the maximum values, the difference was 
on average 19% with a maximum value of nearly 300% (winter 2017). In the case 
of the minimum values, there were differences in another range: with an average 
value of 60% and a maximum of 885 and -766%. In turn, the values in two other 
terms (spring and autumn 2018) differed by two orders of magnitude.

Fig. 5. Percent differences between the maximum and minimum values of GLI at different spatial 
resolutions in a multi-season aspect

It was assumed that the large discrepancy between the maximum and min-
imum values resulted from single measurements in single small pixels corre-
sponding to small terrain fragments that differed considerably from the others 
(roads, ditches, etc.). In order to eliminate the effect of the extreme values on 
the observations, the course of the 1st, 5th, and 9th decile values in the multi-sea-
son scale was determined at both spatial resolutions. The values of the selected 
deciles demonstrated a surprisingly similar course of all indices, with a correla-
tion exceeding 0.99. The variability level is well illustrated by the combination 
of absolute maximum and minimum values and selected percentiles (Fig. 6–8).

The multi-season course of NDVI, EVI, and GLI for the randomly selected 
3-m and 30-m pixels in the homogeneously used meadow varies. The highest 
similarity of values can be observed at both resolutions in the case of EVI: the 
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Fig. 6. Multi-season course of the maximum and minimum values as well as the 1st, 5th, and 9th  
deciles of NDVI in the analysed area for two spatial resolutions. The decile values  

are overlapping

Fig. 7. Multi-season course of the maximum and minimum values as well as the 1st, 5th, and 9th 
deciles of EVI in the analysed area for two spatial resolutions. The decile values are  

overlapping
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correlation was estimated at 0.95–0.99 and the R2 coefficient was in the range of 
0.65–0.99 (Fig. 9). A substantially lower correlation was found for NDVI (cor-
relation 0.79–0.96, R2 0.62–0.92) and GLI (correlation 0.75–0.95, R2 0.55–0.9). 
The variation of the values was not observed in the case of the small pixels, and 
the average values were significantly lower than those of EVI. 

Fig. 8. Multi-season course of the maximum and minimum values as well as the 1st, 5th, and 9th 
deciles of GLI in the analysed area for two spatial resolutions. The decile values are overlapping

Fig. 9. The results of comparing the course of the studied indicators in 3-m and 30-m pixels; 
the graph shows the maximum, minimum and average values for 90 3-m pixels compared with 
the corresponding 30-m pixels; (a–c) R2 coefficient for NDVI, EVI and GLI, respectively; (d–f) 

Pearson correlations for NDVI, EVI and GLI, respectively
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Additionally, we attempted to determine the impact of the resampling method 
on the spatial diversity of the analysed indices. The correlation between the val-
ues of the indices resampled with the different methods (Table 2) indicates that 
the three basic methods for spatial data resampling were fully consistent in the 
analysed case. This was especially evident in the case of the bilinear and cubic 
methods, although the results of the most common nearest-neighbour method did 
not differ from the others either. In contrast, the results interpolated with the use of 
the arithmetic mean of the resampled pixels in the case of NDVI and GLI differed 
substantially. A high similarity of values was noted in the case of EVI as well.

Table 2. Pearson correlations between 30-m matrices calculated with the use of various methods

Resampling method NDVI EVI GLI
Nearest neighbour – bilinear 0.99881 0.99859 0.99259
Nearest neighbour – cubic 0.99876 0.99854 0.99229
Nearest neighbour – average 0.79040 0.98465 0.77347
Bilinear – cubic 0.99996 0.99996 0.99972
Bilinear – average 0.79090 0.98803 0.77894
Cubic – average 0.79023 0.98728 0.77558

DISCUSSION

The analysed vegetation indices have been extensively investigated for 
many years. Recently, new indices have appeared or those applied previously 
have been modified (Fraga et al. 2014, Moreira et al. 2017, Karkauskaite et al. 
2017, Tao et al. 2020). The choice of an indicator that best reflects the charac-
teristics of vegetation in a given area is always a problem. There is a need for 
a compromise between the product quality and the logistic and technological 
possibilities (Xue and Su 2017). 

The course of the values for all the analysed indices was similar (Sousa et 
al. 2019). The lowest differences in their values were observed in the autumn 
and winter periods. During the spring increase in plant photosynthetic activity, 
the spatial distribution of the indices started to vary significantly and exhibited 
the greatest variability in the value before the first mowing (at the beginning of 
summer). The other decline in the values of all indices recorded at the beginning 
of autumn was caused by another mowing round.

The variability of NDVI, which is based on the RED and NIR channels, 
was much lower than that exhibited by GLI; nevertheless, the effect of infor-
mation derived only from the observations of vegetation was very strong. This 
was similar in the case of EVI, where the course was equally strongly correlated 
with seasonality but was burdened with a smaller error derived from the atmos-
phere and background (Huete et al. 2002).
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The design of the EVI indicator seems to be optimal for the characteris-
tics of meadow communities, as it includes the gain factor, i.e. enhancement 
of the vegetation signal, and simultaneously the atmospheric resistance RED 
and BLUE coefficients as well as the canopy background correction factor. The 
NDVI and EVI values were highly similar throughout the study period, which is 
largely related to the use of a similar configuration of the channels for spectral 
information.

The dissimilarity of GLI from the other indicators is associated with the 
strong influence of green on the values, which is of great importance in the case 
of mixed pixels and pixels that not directly related to vegetation: the values for 
the small 3-m pixels were drastically different from the resampled value for the 
large pixel. Nevertheless, the course of GLI was consistent with the course of 
the other indices, which may support its suitability when only an RGB camera 
is available.

In recent years, numerous studies have been conducted to fuse data from 
sensors with different spatial and spectral resolutions, including fusion of data 
from multi- and hyperspectral sensors (Hwang et al. 2011, Liu W. et al. 2020, 
Ovakoglou et al. 2020). Some investigations have confirmed the possibility of 
using low-resolution data to infer point values or to refer to a substantially high-
er field resolution, with high correlations between data sequences with a differ-
ing spatial dimension (Shirsath et al. 2020). It is significant that the literature 
provides information about the possibility of using low-resolution data in the 
upscaling process in the case of EVI (Ovakoglou et al. 2020), whose resampling 
potential has also been confirmed in this study. Gao et al. (2020) effectively 
fused data from Landsat and MODIS sensors and obtained a high correlation 
of selected NDVI values; the correlation was clearly higher for grasslands than 
for lands managed in another way. Similar results were obtained by Li et al. 
(2014) based on analogous data from the same sensors. In turn, Caras et al. 
(2017) analysed coral reefs using data from various high-resolution sensors. 
The authors concluded that substrate mixing plays a major role in noise creation 
and a decrease in accuracy. This inference is correct in the case of a research 
object with a complex structure, but is not confirmed in the case of the relatively 
homogeneous meadow.

The analysis of single random pixels in relation to the surface of the large 
pixel (30-m) revealed a very high level of agreement in the case of EVI. This 
is associated with the low spatial variability of the indicator, whose algorithmic 
design allows enhancement of the vegetation data. This indicates greater possi-
bilities of using low-resolution data for precise spatial analysis. There were no 
similar correlations for NDVI and GLI, where the statistical parameters were 
lower by an order of magnitude. 

It was found that, regardless of the method used for upscaling the high-res-
olution data, the results were similar. Only the arithmetic mean differed from 
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that calculated using the other resampling techniques; in the case of EVI, all 
techniques yielded similar effects, which should be associated with the charac-
teristics of this indicator mentioned above.

CONCLUSIONS

The spatial variability of the indices is very strongly correlated with the 
type of land use.

The use of high-resolution data is not advisable in the context of the spa-
tial variability of seasonal vegetation indices in the case of a terrain with homo-
geneous land cover. The temporal course of structurally simplified indices is 
less homogeneous than that of indicators with greater complexity consisting of 
a greater number of modifying factors. Based on the investigations presented in 
this article, it can be concluded that EVI is the best-suited indicator for upscaling.

Regardless of the method for data averaging, the convergence of informa-
tion between randomly selected high-resolution pixels and a field with a lower 
resolution yields good results in the case of EVI.

The analysed GLI indicator exhibits the lowest potential for use in terms of 
spatial resolution for analyses of areas characterised by homogeneous land use.
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