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12Abstract. The purpose of the study was to verify the possibility of creation of reliable soil texture 
class (STC) maps of a topsoil based on calibration of shallow (0–30 cm) soil electrical conductivi-
ty (ECsh) with small datasets of soil samples with laboratory determined STC. The study was per-
formed in three fields located in different regions of Poland: Pomerania (glacial soils), Mazovia 
(alluvial soils) and Lower Silesia (soils formed from loess-derived sediments over glacial mate-
rials). ECsh values were calibrated against four datasets of soil samples. The smallest datasets 
(5–6 soil samples per field) were selected: 1) in an arbitrary way; or 2) based on the quartiles of 
ECsh values. A dataset of an intermediate size (11–17 points) and a full dataset of data available 
(33–38 points) were also tested. The equations used for calibration of ECsh values with fine soil 
fractions contents were most frequently non-linear. For the fields with smaller ST variation to 
a depth of 90 cm, such calibration produced STC maps with agreement of more than 90% of area 
with respective calibration of all data available. The ECsh values depended on the content of fine 
soil (<2 mm) fractions to a depth of 90 cm, so ECsh measurements can be efficient in mapping the 
topsoil texture of fields with relatively small texture changes in subsoil. The areas with the same 
STC obtained using the greatest reference dataset and the smallest dataset are a better indicator of 
STC assessment quality than the values of assessment errors.
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INTRODUCTION

Soil texture (ST) is an important property to be considered in precision agri-
culture (Mzuku et al. 2005) in variable application of inputs: fertilizers, lime, 
manure (Ruckamp et al. 2013) seeds or water. Commonly accepted methods 
of ST determination (pipette and hydrometer) are expensive and time-consum-
ing (Coates and Hulse 1985). The laser diffraction method is quick, but fre-
quently underestimates the clay content in the soil (Ferro and Mirabile 2009, 
Orzechowski et al. 2014). A high number of soil samples (>100) is required to 
characterize a large field (Webster and Oliver 1992), but Florinsky (2012) sug-
gested to reduce this number to 40. Due to high costs, the collection and analysis 
of such number of soil samples to characterize production fields is rather unac-
ceptable in commercial precision agriculture. Thus, it is important to reduce the 
number of soil samples and detect the areas of the field differing in ST, using 
other methods, for example, measurements of soil electrical conductivity (EC) 
or apparent electrical conductivity (ECa). A strong and positive correlation 
between EC/ECa and a clay content in soil was observed in many studies (Sud-
duth et al. 2005, Machado et al. 2006, Kuhn et al. 2009, Landrum et al. 2015, 
Serrano et al. 2014). Ambiguous results refer to the relationships between EC/
ECa and sand and silt content. Positive and significant correlation of EC/ECa 
with soil silt content was obtained by Serrano et al. (2014) and by Kuhn et al. 
(2009). Negative, insignificant or positive correlations between silt content and 
EC/ECa were observed by Sudduth et al. (2005) for different fields. Landrum et 
al. (2015) reported positive correlation of EC/ECa with sand content, contrary 
to Serrano et al. (2014). Insignificant, positive or negative relationships between 
EC/ECa and a sand content, depending on field and other factors, were obtained 
by Sudduth et al. (2005).

The aim of the present study was: 1) the evaluation of accuracy of shal-
low EC (ECsh) calibration for assessment of ST using a small number of soil 
samples 2) the assessment of ST prediction quality in topsoil (0–30 cm) using 
a small number of soil samples collected across a full range of soil ECsh values 
and best-fitted regression models; 3) comparison of quality of soil texture class 
(STC) maps obtained from different ST datasets of soil samples used for the 
calibration of the ECsh values.

MATERIALS AND METHODS

The study considered three fields (Table 1) in northern (field A, Damno), cen-
tral (field B, Imielin) and southern (field C, Górzec) Poland. Field A with soils of 
glacial origin is most representative for Poland, comparable with about 40% of 
arable land (Pondel et al. 1979). The soils of fields B are of alluvial origin and the 
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soils of field C are originated from shallow loess-derived sediments (Jary et al. 
2002) over glacial till.

TABLE 1. BASIC INFORMATION ON SITES OF THE STUDY AND SOIL 
ELECTRICAL CONDUCTIVITY (EC) MEASUREMENTS AND SOIL SAMPLING

Geographic 
coordinates
Area (ha)

Soil WRB 2007*
dominant and 

associated

Texture class
dominant 

(associated)

Data collection

Type of data Date n

Field A

54°31’N, 
17°18’E

22 ha

Luvisols (about 
85%), Regosols 

(10%), Cambisols 
and Arenosols

Sandy loam 
(loamy sand)

EC 16 Sep 14 4714
Nmin sampling (N) 18 Aug 13 22

Soil pits (P) 16 Nov 13
24Mar 11**  

(1 pit)

5
Additional deep soil 

samples (D) 9

Field B

52º4’N
21º10’
20.5 ha

Fluvisols
Silt loam

(loam, sandy 
loam)

EC 8 Nov 13 5118
Nmin sampling (N) 20 Aug 13 22

Soil pits (P)
19 Nov 13

6
Additional deep soil 

samples (D) 5

Field C

50º48’N,
17º5’E
20.5 ha

Phaeozems
Silt loam

(loam, sandy 
loam)

EC 18 Sep 14 5169
Nmin sampling (N) 7 Mar 13 22

Soil pits (P) 21Nov13, 
18Sep14 (1 pit 

and 1 other point)

6
Additional deep soil 

samples (D) 10

* – IUSS Working Group WRB 2014

** – data obtained during research project NN 310 089036 supported by the Polish Ministry of Science 
and Higher Education in years 2009–2012

Soil sampling comprised (Table 1): deep soil samples (N) collected sepa-
rately from the approximated layers 0–30, 30–60 and 60–90 cm for a mineral 
nitrogen (Nmin) content determination and ST analyses, soil pits (P) and addi-
tional deep soil samples (D). The points of soil sampling were selected to rep-
resent different delineations of agricultural soil map and different positions in 
relief. Air dried soil samples were passed through a 2 mm sieve and subject-
ed to texture analysis using a hydrometric (areometric) method widely used in 
Poland (Orzechowski et al. 2014). Soil EC measurements were done using Veris 
Mobile Sensor Platform 3 (Veris Technologies, Inc. Salina, KS, USA) carried by 
a tractor along tramlines every 15 m.

The results of shallow EC measurements (ECsh, corresponding to a depth 
of about 30 cm, Kweon et al. 2012) were calibrated with laboratory determined 
ST of a topsoil layer (0–30 cm). However, the results of ST determination of 
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subsoil layers (to a depth of 90 cm) were considered to assess the variability of 
sand, silt and clay content with soil depth and their correlation with ECsh read-
ings. The median value of all ECsh measurements registered within a diameter 
of 10 m around each soil sampling point was calculated and treated further in 
calculations as the ECsh value in this point.

ECsh calibration was carried out using ST values derived from 4 soil sam-
pling datasets for each field: R treated as reference dataset, i.e. all soil samples 
(sum of N, P and D, Table 1), PD (sum of data from soil pits and additional deep 
soil samples), P (data from soil pits only) and Q (quartiles of all ECsh values 
corresponding to all soil sampling points in each field). The Q datasets com-
prised 5 soil sampling points for fields B and C and 6 for field A, because the 
ECsh median was 7.32 (mS·m-1) and there were two soil sampling points close 
to this value (7.31 and 7.33 mS·m-1), thus both were included in the Q dataset 
for site A. The ST assessment was carried out in the same way for each field and 
dataset. The best-fitted regressions for the relationships between ECsh values 
and the content of each soil fine fraction were calculated for sampling points 
included in each dataset. The contents of 2 fine soil fractions for the remaining 
soil sampling points of each field (i.e. not included in a statistical analysis for 
each dataset), were calculated using regression equations with greater determi-
nation coefficient – r2 – value from three linear equations (for sand, silt and 
clay). The content of a third fraction was calculated by subtracting the contents 
of the two already calculated fractions from 100.

The results of ECsh calibration using each dataset (R, PD, P and Q) were 
compared to the results of the laboratory determination of soil fractions in vali-
dation dataset. This dataset comprised sampling points not included in PA, P and 
Q datasets. The validation dataset comprised 12 soils sampling points in field 
A and 17 points both in field B and field C. Root mean square errors (RMSE) 
and mean absolute errors (MAE) based on analysis of a linear regression were 
calculated according to the following formulas:

Where: yi is the content of the particular soil fraction, as determined in the 
laboratory, and iŷ is the predicted soil fraction, as determined using ECsh.

MAEs values were compared between different datasets using ANOVA and 
a Tukey method of multiple comparisons (at 0.05 probability level). Absolute 
errors for each point were treated as replications. The analyses were performed 
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for each soil fraction separately. The regression functions for relationship 
between fine soil fractions and ECsh and statistical analyses were carried out 
in a Statgraphics Plus 4.1 software (Statistica Graphics Corp. Rockville, USA). 
The predictive ability of ECsh at reference sampling points was assessed by 
comparing the predicted STC with the STC determined by laboratory analysis. 
If the predicted and the actual values were the same, the prediction quality was 
considered as a good one.

Maps of STCs for each field were made for all calibration datasets using 
the following procedure: 1) calculation of fine soil fraction contents for each 
point of ECsh measurement in .xls files containing data; 2) import of these files 
to a QGIS 2.0 software (Quantum GIS Development Team 2013) and prepara-
tion of .shp files; 3) interpolation using ordinary kriging (spherical function) of 
calculated sand and clay contents with the use of ArcGIS 9.3 software (ESRI, 
Redlands, USA); 4) generation of STC maps using the QGIS 2.0 software and 
the “soil texture” plugin. The reference ST map based only on laboratory ST 
analysis of all soil samples available for a field were prepared using QGIS 2.0 
software, IDW interpolation with default settings and the “soil texture” plugin.

The quality of STC maps prepared using different ECsh vs. ST calibration 
datasets were assessed by 1) comparison of detection of particular STCs by con-
sidered datasets and laboratory results, and 2) calculation of common (overly-
ing) areas with the same STC on a map calibrated using R-dataset and on the 
map prepared on the base of remaining PD, P and Q datasets.

RESULTS AND DISCUSSION

On average, field A was characterized by sandy loam with a small area of 
loamy sand in a plough layer (Table 2). The topsoil of B and C fields was char-
acterized generally by higher clay content than the topsoil of field A and the 
mean STC of these two fields was mainly silt loam with some areas character-
ized by loam and sandy loam STC. The variability of sand and silt content with 
depth was much greater in fields B and C than in field A, but variability of a clay 
content with depth was greater in field A than in the other two fields. The ECsh 
values were strongly correlated with fine soil fractions content even to a depth 
of 90 cm on all fields (Table 2).
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TABLE 2. THE CONTENT OF FINE SOIL FRACTIONS IN A TOPSOIL LAYER, 
COEFFICIENT OF VARIABILITY OF RESPECTIVE ST FRACTIONS WITHIN 

A 0–90 CM LAYER AND PEARSON’S CORRELATION COEFFICIENTS 
BETWEEN ECSH VALUES (mS·m-1) AND WEIGHTED CONTENT OF SAND, 

SILT AND CLAY (ALL DATA)

Frac-
tion

Fine soil fractions 
content (%) in topsoil

Coefficient of variability of 
the content of fine soil frac-
tions with a depth in a layer 

of 0–90 cm 

Correlation coefficients 
between ECsh values and 

weighted content of fine soil 
fractions to a depth of:

Range Mean Median Range Mean Median 30 cm 60 cm 90 cm
Field A

Sand 51-78 65.1 64 0.007–0.15 0.05 0.06 -0.524 -0.495 -0.429
Silt 17-43 28.6 30 0.04–0.70 0.10 0.15 0.318 0.254 0.230

Clay 2-15 6.3 6 0.07–0.90 0.36 0.41 0.581 0.636 0.556
Field B

Sand 20-62 37.8 37 0.08–0.60 0.30 0.31 -0.684 -0.831 -0.833
Silt 29-67 50.4 51.5 0.05–0.95 0.32 0.36 0.670 0.828 0.833
Clay 6-16 11.8 12.5 0.12–1.09 0.25 0.34 0.373 0.625 0.684

Field C
Sand 19-65 34.1 33 0.06–0.67 0.29 0.31 -0.534 -0.727 -0.789
Silt 25-74 56.4 58 0.04–0.98 0.20 0.31 0.504 0.664 0.752
Clay 2-16 9.5 9 0.00–1.20 0.24 0.32 0.251 0.540 0.500

Underlined – Pearson’s correlation significant, at 0.05 significance level

When considering the whole ST dataset available (dataset R), the ECsh val-
ues were positively and significantly correlated with clay, but negatively with 
sand content (Tables 2 and 3, Fig. 1) for each field. This was previously found by 
Serrano et al. (2014) and Kuhn et al. (2009). The positive relationship of ECsh 
with a clay content was observed in many studies (Sudduth et al. 2005, Mach-
ado et al. 2006, Kuhn et al. 2009, Landrum et al. 2015, Serrano et al. 2014). 
In fields B and C, significant and positive relationship was also found between 
silt content and ECsh values, as it was observed by Serrano et al. (2014) and 
Landrum et al. (2015).

The relationship between ECsh and soil fractions was most frequently cur-
vilinear (Fig. 1 and Table 3). In 4 cases out of 12, a linear function was also the 
best-fitted model (clay content with ECsh values on field A for datasets R and Q, 
and silt and sand content with ECsh values on field B for dataset Q). This sug-
gests that use of linear functions for ST prediction might diminish the quality of 
such prediction.
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The analysis of ANOVA (Table 4) indicated significant differences only in 
prediction of sand and silt in field C, where the Q dataset was a significantly 
worst predictor of these fractions in comparison with other datasets. The lowest 
RMSEs values of ST assessment (Table 4) were obtained for a complete data-
set R. However, the next dataset in size – PD – was second in terms of RMSEs 
values only in three cases of prediction (sand and clay in field B and sand in 
field C), and produced the highest RMSEs in prediction in two cases (silt and 
clay in field A). The analysis of MAE values produced, in most cases, similar 
rankings (from the lowest to highest value) as RMSE ranking and, thus, brings 
to similar conclusions. However, in one case (prediction of silt content on field 
A), the greatest dataset in size R – did not produce the smallest MAE values 
in the reference dataset. In this case, small dataset Q was first in ranking and 
produced smallest MAE of all datasets. The second dataset in size – PD – was 
second in ranking only in three cases (prediction of sand in field A and B, and 
prediction of clay in field B). The PD dataset was last in ranking (produced the 
highest values of MAE) in two cases – prediction of silt and clay content in field 
A. These results indicated, that in some cases, the simple increase of the size of 
dataset used for ECsh calibration with fine soil fractions content might not result 
in improvement of prediction quality. 

Overall, the smallest values of both kinds of errors (RMSEs and MAEs) 
were obtained for field A, and the greatest for field B. However, the use of Q 
dataset for calibration of ECsh results in field B with sand and silt fractions pro-
duced the highest values of errors across all fields and datasets.

Fig. 1. The plots of dependence between the content of soil fractions and ECsh
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TABLE 4. ERRORS OF ASSESSMENT (RMSE – ROOT MEAN SQUARE ERROR 
AND MAE – MEAN ABSOLUTE ERROR, R, PD, P, Q – SOIL SAMPLINGS 
DATASETS) OF ST FRACTIONS BASED ON REGRESSION WITH ECSH 

VALUES AS A PREDICTOR IN THE VALIDATION DATASET. THE NUMBERS IN 
PARENTHESIS INDICATE THE PLACE OF PARTICULAR DATASET IN RANK, 
WHERE THE NUMBER 1 WAS ATTRIBUTED TO THE SMALLEST VALUE OF 

RMSE OR MAE

Frac-
tion

RMSE MAE
R* PD P Q R PD P Q P-value**

Field A
Sand 5.38 (1) 5.82 (3) 5.40 (2) 6.34 (4) 3.80 (1) 4.13 (2) 4.19 (4) 4.15 (3) 0.999
Silt 5.50 (1) 6.54 (4) 5.60 (2) 6.27 (3) 3.98 (2) 4.52 (4) 4.47 (3) 3.81 (1) 0.993
Clay 2.30 (1) 2.69 (4) 2.37 (2) 2.39 (3) 1.73 (1) 1.99 (4) 1.81 (2) 1.98 (3) 0.991

Field B
Sand 5.38 (1) 8.50 (2) 8.54 (3) 9.21 (4) 6.20 (1) 6.63 (2) 6.66 (3) 8.38 (4) 0.733
Silt 5.50 (1) 8.59 (3) 9.06 (4) 7.26 (2) 5.13 (1) 6.74 (3) 7.04 (4) 6.47 (2) 0.792
Clay 2.31 (1) 2.70 (2) 3.27 (4) 3.07 (3) 1.38 (1) 2.11 (2) 2.71 (4) 2.65 (3) 0.100

Field C
Sand 4.84 (1) 6.20 (2) 6.36 (3) 11.08 (4) 3.69a (1) 4.58a (3) 4.50a (2) 10.42b (4) 0.000
Silt 5.75 (1) 7.42 (3) 7.08 (2) 12.94 (4) 4.70a (1) 5.85a (3) 5.23a (2) 12.23b (4) 0.000
Clay 2.58 (1) 2.90 (3) 3.67 (4) 2.75 (2) 1.90 (1) 2.25 (3) 2.54 (4) 2.15 (2) 0.853

* – R, PA, P and Q and O are various datasets used for spatial ST interpolation; R – all data, P – pits, 
PD – pits and augerings, Q – quartiles

** – the ANOVA was performed to compare datasets of R, P, PA, Q and O for each ST fraction and sep-
arately for MAEs within each field the ANOVA was performed to compare datasets of R, P, PA, Q and O for 
each ST fraction and separately for MAEs and MREs within each field. 

The ability of ECsh to predict proper STC in validation dataset (12 points, 
Figure 2) was very good in field A, where only one dataset (P) failed to predict 
loamy sand (LS) in one point. As a result, in field A, the percentage of validation 
points with correctly predicted STC was 100% for datasets R, PD and Q and 
91.7% for dataset P. The worst results of ECsh calibration were obtained in field 
B, where the percentage of validation points (total 17) with correctly predicted 
STC varied between 35 and 58%. Moreover, the prediction ability of ECsh cal-
ibration in validation points was better for small datasets Q (58%) and P (41%), 
than for an intermediate dataset PD (41%) and a complete dataset R (47%). Field 
B with alluvial soils (Table 1) built up of various layers with different STC was 
characterized by greater variation of silt and clay content to a depth of 90 cm in 
comparison with other fields (Table 2). As a result, ST of subsoil layers (depth 
greater than 30 cm) probably affected the values of ECsh. The ability of ECsh 
to predict topsoil STC in validation dataset (17 points) in field C varied between 
53% (dataset Q) and 94% (dataset R). Other datasets (P and PD) permitted the 
correct prediction of STC in 82% of validation points.
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The maps of STCs (Fig. 2) prepared after calibration of fine soil fractions 
content vs. ECsh showed the presence of small and dispersed areas of silty clay 
loam, clay loam, silty clay and clay areas in field A (Fig. 2). These areas were 
not subjected to soil sampling and their texture could not be confirmed by lab-
oratory analysis.

The calibration of all datasets with ECsh managed to detect areas of most 
important (according to laboratory results) STCs in field A – sandy loam and 
loamy sand (Fig. 2 and Table 5). 

In field B, areas of sandy loam were delineated only by calibration of ECsh 
with the complete dataset R. The use of other, smaller, datasets failed to delin-
eate this STC in the fields and give inconsistent results regarding an area of 
most extensive STCs: loam and silt loam. The areas of loam seem to be clearly 
underestimated by datasets PD and P, and overestimated by dataset Q. Conse-
quently, the calibration of ECsh with small datasets of soil data did not manage 
to produce maps of acceptable similarity to the map produced by IDW interpo-
lation of soil data or based on dataset R. Such a situation probably results from 
the alluvial origin of soil of this field and greater variation of dominating soil 
fractions to a depth of 90 cm, in comparison with field A.

In field C, all datasets managed to delineate approximately the sandy 
loam areas. Moreover, the maps produced by calibration of ECsh and soil data 
from datasets PD and P were similar to the map based on dataset R calibrated 
with ECsh. Only the map prepared from dataset Q showed unacceptable dis-
similarity, due to extensive overestimation of loam, and underestimation of 
silt loam area.

The agreement in ST assessment between R dataset and other datasets 
for sandy loam in field A was always more than 95% of the whole field area 
(Table 5). All datasets, even the smallest, detected not only the presence of san-
dy loam, the STC prevailing in the field, but also loamy sand. On the other 
hand, the extent of loamy sand areas delineated on the basis of various datasets 
was different. It should be noted that very small dataset Q delineated the area 
of loamy sand with almost full agreement with dataset of all available data (R), 
contrary to other datasets P and PD. In field B, the portion of common areas 
with the same STC for R and the smaller datasets did not exceed 65% for PD 
and Q datasets, and was smaller than 60% for P dataset. In field C, the datasets 
PD and P produced the maps of about 90–95% of area agreement with the map 
produced by R dataset, while this agreement for Q dataset was smaller than 
50%. These results clearly confirm the simple, visual assessment of these maps. 
On the other hand, the criterion of area agreement between maps produced by 
ECsh calibration with R dataset with the respective map produced by other 
datasets led to different conclusions than the assessment of prediction errors 
(RMSE and MAE). For example, the best maps of field B was produced by PD 
dataset according to area agreement, by P dataset according to RMSE and by Q 
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dataset according to MAE. However, the resulting map and agreement of areas 
is probably a better criterion of prediction quality than the errors calculated for 
each prediction.

Fig. 2. Maps of soil texture classes predicted on the base of ECsh calibration using the R, PD, P 
and Q datasets and obtained on laboratory data only (“Lab”)
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TABLE 5. DETECTION OF PARTICULAR STC OF A TOPSOIL LAYER, AS COM-
PARED TO THE LABORATORY RESULTS AND AGREEMENT BETWEEN ARE-
AS OF PARTICULAR STCs INDICATED BY DATASET R AND THE SMALLER 

DATASETS

Aspect of 
quality

Detection of STC of 
topsoil

Area with the same STC as on the map based on R 
dataset

ha (% of field area)
Dataset R PD P Q R PD P Q

Field A
Topsoil 

STC
LS + + + + 0.26 0.10 (0.5) 0.02 (0.1) 0.26 (1.2)
SL + + + + 21.53 21.53 (98.8) 21.53 (98.8) 20.97 (97.4)

Whole field 2/2 2/2 2/2 2/2 21.79 21.63 (99.3) 21.55 (98.9) 21.23 (98.6)
Field B

Topsoil 
STC

SL + - - - 0.26 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
L + + + + 10.25 2.80 (13.00) 1.81 (8.4) 10.25 (47.6)

SiL + + + + 11.04 11.03 (51.2) 11.03 (51.2) 3.60 (16.7)
Whole field 3/3 2/3 2/3 2/3 21.55 13.83 (64.2) 12.84 (59.6) 13.85 (64.3)

Field C

Topsoil 
STC

SL + + + + 0.15 0.15 (0.73) 0.15 (0.73) 0.15 (0.7)
L + + + + 2.34 2.21 (11.0) 1.70 (8.5) 2.17 (10.8)

SiL + + + + 17.64 16.03 (79.6) 17.25 (85.9) 9.25 (45.9)
Whole field 3/3 3/3 3/3 3/3 20.13 18.39 (91.3) 19.1 (94.4) 11.57 (57.4)

The detection of particular STC on a field by ECsh calibration with a particular dataset is indicated with 
d, while non-detection – with n.d. 

* For the whole field, the fractions indicate a number of STCs properly detected (numerator) by a par-
ticular dataset used for ECsh calibration and the number of STCs detected in the field by the laboratory anal-
ysis (denominator).

Major problems with detection and correct assessment of the area of par-
ticular STCs of a topsoil layer were observed in fields C and especially B, both 
characterized by greater variation of sand and silt contents to a depth of 90 cm 
(Table 2). This resulted from the fact that the measured values of ECsh depend-
ed not only on the ST of a plough layer, but also on the ST of the deeper layers. 
Heil and Schmidhalter (2012) observed, that clay materials underlying sand at 
a depth of about 40 cm affected ECa readings measured by EM 38 (Geonics, 
Kanada) causing the overestimation of clay and underestimation of sand content.

CONCLUSIONS

In fields with relatively homogeneous soil texture in soil profile to a depth 
of about 90 cm, the calibration of ECsh measurements with small soil sampling 
datasets led to creation of reliable STC maps of topsoil. Such datasets used for 
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calibration were as small as 5–6 soil samples per 20 ha, and comprised STCs 
prevailing in the field. This calibration was more efficient in fields A and C with 
smaller variation of dominating fine soil fractions (sand and silt in this case) to 
a depth of 90 cm. The calibration of ECsh against fine soil fraction was much 
less efficient especially on alluvial soils of field B built up of layers differing 
in ST. In such soils, the results of shallow EC measurements were significantly 
affected by ST of all layers to a depth of about 90 cm. The lowest values of 
RMSE and MAE obtained after calibration of ECsh for ST mapping did not 
always allow to produce better quality STC maps. The areas with the same STC 
obtained using considered dataset and the greatest reference dataset are a better 
indicator of STC assessment than the values of the assessment errors.
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