Some results on convex meromorphic functions

Faruk Ucar, Yusuf Avci


In this paper, we define a function \(F : D\times D\times D\to \mathbb{C}\) in terms of \(f\) and show that Re\(F > 0\) for all \(\zeta,z,w \in D\) if and only if \(f\) belongs to the class of convex meromorphic functions.


Univalent functions; convex meromorphic functions; starlike functions

Full Text:



Duren, P. L., Univalent Functions, Springer-Verlag, Berlin–Heidelberg–New York, 1983.

Miller, J. E., Convex and starlike meromorphic functions, Proc. Amer. Math. Soc. 80 (1980), 607–613.

Gunning, R. C., Introduction to holomorphic functions of several variables, Vol. I, Function Theory, Wadsworth & Brooks/Cole, Pacific Grove – California, 1990.

Hormander, L., An introduction to complex analysis in several variables, Third Edition, North-Holland Publishing Co., Amsterdam, 1990.

Ohno, R., A study on concave functions in geometric function theory, Ph.D. thesis, Tohoku University, 2014.

Ruscheweyh, St., Sheill-Small, T., Hadamard Products of schlicht functions and the Polya–Schoenberg conjecture, Comment. Math. Helv. 48 (1973), 119–135.

Schober, G., Univalent Functions – Selected Topics, Springer-Verlag, New York–Berlin, 1975.

Sheil-Small, T., On convex univalent functions, J. London Math. Soc. 2 (1) (1969), 483–492.

Yulin, Z., Owa, S., Some remarks on a class of meromorphic starlike functions, Indian J. Pure Appl. Math. 21 (9) (1990), 833–840.

Data publikacji: 2019-12-19 10:33:49
Data złożenia artykułu: 2019-12-17 11:49:27


Total abstract view - 618
Downloads (from 2020-06-17) - PDF - 443



  • There are currently no refbacks.

Copyright (c) 2019 Faruk Ucar, Yusuf Avci