A note on the Banach–Mazur distances between \(c_0\) and other \(\ell_1\)-preduals
Abstract
Keywords
Full Text:
PDFReferences
Alspach, D. E., Quotients of c0 are almost isometric to subspaces of c0, Proc. Amer. Math. Soc. 79 (1979), 285–288.
Alspach, D. E., A l1-predual which is not isometric to a quotient of C(alpha), arXiv:math/9204215v1 (1992).
Banach, S., Theorie des operations lineaires, Warszawa, 1932.
Cambern, M., On mappings of sequence spaces, Studia Math. 30 (1968), 73–77.
Casini, E., Miglierina, E., Piasecki, Ł, Hyperplanes in the space of convergent sequences and preduals of l1, Canad. Math. Bull. 58 (2015), 459–470.
Casini, E., Miglierina, E., Piasecki, Ł, Popescu, R., Stability constants of the weak* fixed point property in the space l1, J. Math. Anal. Appl. 452(1) (2017), 673–684.
Durier, R., Papini, P. L., Polyhedral norms in an infinite dimensional space, Rocky Mountain J. Math. 23 (1993), 863–875.
Gergont, A., Piasecki, Ł, On isomorphic embeddings of c into L1-preduals and some applications, J. Math. Anal. Appl. 492(1) (2020), 124431, 11 pp.
Gergont, A., Piasecki, Ł, Some topological and metric properties of the space of l1-predual hyperplanes in c, Colloq. Math. 168(2) (2022), 229–247.
Megginson, R. E., An Introduction to Banach Space Theory, Springer-Verlag, New York, 1998.
DOI: http://dx.doi.org/10.17951/a.2022.76.1.25-30
Date of publication: 2022-10-05 20:39:32
Date of submission: 2022-10-04 19:08:19
Statistics
Indicators
Refbacks
- There are currently no refbacks.
Copyright (c) 2022 Agnieszka Gergont