A continuum individual based model of fragmentation: dynamics of correlation functions

Agnieszka Tanaś

Abstract


An individual-based model of an infinite system of point particles in Rd is proposed and studied. In this model, each particle at random produces a finite number of new particles and disappears afterwards. The phase space for this model is the set Γ of all locally finite subsets of Rd. The system's states are probability measures on  Γ the Markov evolution of which is described in terms of their  correlation functions in a scale of Banach spaces. The existence and uniqueness of solutions of the corresponding evolution equation are proved.

Keywords


Configuration space; individual-based model; birth-and-death process; correlation function; scale of Banach spaces; Ovcyannikov method.

Full Text:

PDF

References


Albeverio, S., Kondratiev, Y., Rockner, M., Analysis and geometry on configuration spaces. J. Funct. Anal. 154 (1998), 444-500.

Bogoliubov, N., Problems of a dynamical theory in statistical physics, in Studies in Statistical Mechanics, Vol. I (1962), 1-118.

Boulanouar, M., The asymptotic behavior of a structured cell population, J. Evol. Equ. 11 (3) (2011), 531-552.

Finkelshtein, D., Around Ovsyannikov’s method, Methods Funct. Anal. Topology 21 (2) (2015), 134-150.

Finkelshtein, D., Kondratiev, Y., Kozitsky, Y., Glauber dynamics in continuum: A constructive approach to evolution of states, Discrete Contin. Dyn. Syst. 33 (4) (2013), 1431-1450.

Finkelshtein, D., Kondratiev, Y., Kozitsky, Y., Kutoviy, O., The statistical dynamics of a spatial logistic model and the related kinetic equation, Math. Models Methods Appl. Sci. 25 (2) (2015), 343-370.

Finkelshtein, D., Kondratiev, Y., Kutoviy, O., Individual based model with competition in spatial ecology, SIAM J. Math. Anal. 41 (2009), 297-317.

Finkelshtein, D., Kondratiev, Y., Oliveira, M. J., Markov evolution and hierarchical equations in the continuum. I: One-component systems, J. Evol. Equ. 9 (2009), 197-233.

Garcia, N. L., Kurtz, T. G., Spatial birth and death processes as solutions of stochastic equations, ALEA Lat. Am. J. Probab. Math. Stat. 1 (2006), 281-303.

Kondratiev, Y., Kuna, T., Harmonic analysis on configuration space. I. General theory, Infin. Dimens. Anal. Quantum Probab. Relat. Top. 5 (2002), 201-233.

Kondratiev, Y., Kuna, T., Oliveira, M. J., Holomorphic Bogoliubov functionals for interacting particle systems in continuum, J. Funct. Anal. 238 (2006), 375-404.

Kondratiev, Y., Kutoviy, O., On the metrical properties of the configuration space, Math. Nachr. 279 (2006), 774-783.

Kondratiev, Y., Kutoviy, O., Pirogov, S., Correlation functions and invariant measures in continuous contact model, Infin. Dimens. Anal. Quantum Probab. Relat. Top. 11 (2008), 231-258.

Kozitsky, Y., Dynamics of spatial logistic model: finite systems, in Banasiak, J., Bobrowski, A., Lachowicz, M. (eds.) Semigroups of Operators - Theory and Applications, Bedlewo, Poland, October 2013. Springer Proceedings in Mathematics & Statistics 113, 2015, 197-211.

Lebowitz, J. L., Rubinow, S. I., A theory for the age and generation time distribution of a microbial population, J. Math. Biol. 1 (1974), 17-36.

Neuhauser, C., Mathematical challenges in spatial ecology, Notices Amer. Math. Soc. 48 (11) (2001), 1304-1314.

Shanthidevi, C. N., Matsumoto, T., Oharu, S., Nonlinear semigroup approach to age structured proliferating cell population with inherited cycle length, Nonlinear Anal. Real World Appl. 9 (5) (2008), 1905-1917.

Treves, F., Ovcyannikov Theorem and Hyperdifferential Operators, Instituto de Matem´atica Pura e Aplicada, Conselho Nacional de Pesquisas, Rio de Janeiro, 1968.




DOI: http://dx.doi.org/10.17951/a.2015.69.2.73-83
Data publikacji: 2015-12-30 22:51:59
Data złożenia artykułu: 2015-12-30 22:40:24

Refbacks

  • There are currently no refbacks.


Copyright (c) 2015 Agnieszka Tanaś