Coefficient bounds for some subclasses of p-valently starlike functions

C. Selvaraj, O. S. Babu, G. Murugusundaramoorthy

Abstract


For functions of the form \[f(z) = z^{p} + \sum_{n = 1}^{\infty} a_{p + n} z^{p + n}\] we obtain sharp bounds for some coefficients functionals in certain subclasses of starlike functions. Certain applications of our main results are also given. In particular, Fekete-Szego-like inequality for classes of functions defined through extended fractional differintegrals are obtained.

Keywords


Analytic functions; starlike functions; convex functions; p-valent functions; subordination; convolution; Fekete-Szego inequality.

Full Text:

PDF

References


Ali, R. M., Ravichandran, V., Seenivasagan, N., Coefficient bounds for p-valent functions, Appl. Math. Comput. 187 (2007), 35–46.

Janowski, W., Some extremal problems for certain families of analytic functions, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys. 21 (1973), 17–25.

Keogh, F. R., Merkes, E. P., A coefficient inequality for certain classes of analytic functions, Proc. Amer. Math. Soc. 20 (1969), 8–12.

Ma, W. C., Minda, D., A unified treatment of some special classes of univalent functions, Proceedings of the Conference on Complex Analysis (Tianjin, 1992), Int. Press, Cambridge, MA, 1994, 157–169.

Owa, S., On the distortion theorem. I, Kyungpook Math. J. 18 (1) (1978), 53–59.

Owa, S., Srivastava, H. M., Univalent and starlike generalized hypergeometric functions, Canad. J. Math. 39 (5) (1987), 1057–1077.

Patel, J., Mishra, A., On certain subclasses of multivalent functions associated with an extended differintegral operator, J. Math. Anal. Appl. 332 (2007), 109–122.

Prokhorov, D. V., Szynal, J., Inverse coefficients for ((alpha, beta))-convex functions, Ann. Univ. Mariae Curie-Skłodowska Sect. A 35 (1981), 125–143.

Selvaraj, C., Selvakumaran, K. A., Fekete–Szego problem for some subclass of analytic functions, Far East J. Math. Sci. (FJMS) 29 (3) (2008), 643–652.

Srivastava, H. M., Mishra, A. K., Das, M. K., The Fekete–Szego problem for a subclass of close-to-convex functions, Complex Variables Theory Appl. 44 (2) (2001), 145–163.

Srivastava, H. M., Owa, S., An application of the fractional derivative, Math. Japon. 29 (3) (1984), 383–389.

Srivastava, H. M., Owa, S., Univalent Functions, Fractional Calculus and their Applications, Halsted Press/John Wiley & Sons, Chichester–New York, 1989.




DOI: http://dx.doi.org/10.2478/v10062-012-0032-y
Date of publication: 2015-07-15 00:00:00
Date of submission: 2016-01-12 13:21:49


Statistics


Total abstract view - 2628
Downloads (from 2020-06-17) - PDF - 472

Indicators



Refbacks

  • There are currently no refbacks.


Copyright (c) 2016 C. Selvaraj, O. S. Babu, G. Murugusundaramoorthy