About a Pólya-Schiffer inequality

Bodo Dittmar, Maren Hantke


For simply connected planar domains with the maximal conformal radius 1 it was proven in 1954 by G. Pólya and M. Schiffer that for the eigenvalues \(\lambda\) of the fixed membrane for any \(n\) the following inequality holds \[\sum_{k=1}^n\frac{1}{\lambda_k}\geq \sum_{k=1}^n\frac{1}{\lambda_k^{(\sigma)}},\] where \(\lambda_k^{(\sigma)}\) are the eigenvalues of the unit disk. The aim of the paper is to give a sharper version of this inequality and for the sum of all reciprocals to derive formulas which allow in some cases to calculate exactly this sum.


Membrane eigenvalues; sums of reciprocal eigenvalues

Full Text:



Bandle, C., Isoperimetric Inequalities and Applications, Pitman Publ., London, 1980.

Dittmar, B., Sums of reciprocal eigenvalues of the Laplacian, Math. Nachr. 237 (2002), 45-61.

Dittmar, B., Sums of free membrane eigenvalues, J. Anal. Math. 95 (2005), 323-332.

Dittmar, B., Eigenvalue problems and conformal mapping, R. K¨uhnau (ed.), Handbook of Complex Analysis: Geometric Function Theory. Vol. 2, Elsevier, Amsterdam,

, pp. 669-686.

Dittmar, B., Free membrane eigenvalues, Z. Angew. Math. Phys. 60 (2009), 565-568.

Hantke, M., Summen reziproker Eigenwerte, Dissertation Martin-Luther-Universitat, Halle-Wittenberg, 2006.

Henrot, A., Extremum problems for eigenvalues of elliptic operators, Birkauser, Basel-Boston-Berlin, 2006.

Luttinger, J. M., Generalized isoperimetric inequalities, J. Mathematical Phys. 14 (1973), 586-593, ibid. 14 (1973), 1444-1447, ibid. 14 (1973), 1448-1450.

Pólya, G., Schiffer, M., Convexity of functionals by transplantation, J. Analyse Math. 3 (1954), 245-345.

Pólya, G., Szego, G., Isoperimetric Inequalities in Mathematical Physics, Princeton University Press, Princeton, N. J., 1951.

DOI: http://dx.doi.org/10.17951/a.2011.65.2.29-44
Data publikacji: 2016-07-27 21:54:08
Data złożenia artykułu: 2016-07-26 07:54:18


  • There are currently no refbacks.

Copyright (c) 2011 Bodo Dittmar, Maren Hantke