Geochemical study of precipitates in the architectural surfaces from Bern, Switzerland

Miłosz Andrzej Huber, Stanisław Hałas

Abstract


This geochemical study aims to resolve genesis of precipitation spots on the walls on the Nydeggbrücke in Bern, Switzerland. The bridge is composed of Jurassic limestone and dolomites and coated on both sides with Miocene flysch sandstone. As a result of infiltration of aqueous solutions derived directly from the road embankment into the sandstone, sulfate encrustation on the walls of sandstone has been formed.
The study of these precipitates using optical and electron microscopy clearly shows dominant sulfate phases are gypsum (calcium sulfate), mirabilite (sodium hydrated sulfate) and polyhalite (potassium, calcium and magnesium sulfate). Impurities of Ni, Cu, Zn and Pb was encountered by ICP-MS analysis. Identified polymetallic mineralization is associated with the infrastructure of the bridge and the accumulation of pollution from vehicular traffic. This is also confirmed by sulfur and oxygen stable isotope analyses of sulfates.

Keywords


precipitates; sulfate; geochemistry; pollution; microscopy; isotope analysis

Full Text:

PDF

References


CENDÓNA DI, PERYT TM, AYORAC C, PUEYOD JJ, TABERNERC C ,2004: The importance of recycling processes in the Middle Miocene Badenian evaporite basin (Carpathian foredeep): palaeoenvironmental implications. Palaeogeography, Palaeoclimatology, Palaeoecology 212: 141–158

CLAYPOOL GE, HOLSER WT, KAPLAN IR, SAKAI H, ZAK I., 1980; The age curves of sulfur and oxygen isotopes in marine sulfate and their mutual interpretations. Chem Geol 28:199-260

DEMOULIN T, GIRARDET F, FLATT TJ, 2014; Reprofiling of altered building sandstones : on-site measurement of the environmental conditions and their evolution in the stone. 32èmes Rencontres de l’AUGC, Polytech Orlans, 4 au 6 juin 2014

EMCH U, 2012; Die Berner Nydeggbrücke Geschichte einer bautechnischen Pionierleistung, Haupt Verlag, pp 200

JABOYEDOFF M, BAILLIFARD F, DERRON MH, 2003; Preliminary note on uplift rates gradient, seismic activity and possible implications for brittle tectonics and rockslide prone areas: The example of western Switzerland, Bull. Soc. Vaud. Sc. Nat. 88.3: 401-420

KROUSE HR, GRINENKO VA (EDIT.), 1991; Stable Isotopes, Natural and Anthropogenic Sulphur in the Environment, SCOPE 43, Wiley, pp. 440

PERYT TM, HAŁAS S, HRYNIV SP, 2010; Sulphur and oxygen isotope signatures of late Permian Zechstein anhydrites, West Poland: seawater evolution and diagenetic constraints, Geological Quarterly, 2010, 54 (4): 387–400

SCHÜRCH M, KOZEL R, SCHOTTERER U, TRIPET JP, 2003; Observation of isotopes in the water cycle – the Swiss National Network (NISOT) Environmental Geology (2003) 45:1–11; DOI: 10.1007/s00254-003-0843-9

STOREMYR P, 2010; With pickaxe into modern times: Quarrying of Bernese sandstone (CH); http://per-storemyr.net/2012/01/11/with-pickaxe-into-modern-times-quarrying-of-bernese-sandstone-ch/

Materials of the Polish Embassy in Bern, 2014 https://bern.trade.gov.pl/pl/




DOI: http://dx.doi.org/10.17951/aaa.2015.70.113
Date of publication: 2016-04-29 12:28:31
Date of submission: 2015-12-08 23:10:30


Statistics


Total abstract view - 708
Downloads (from 2020-06-17) - PDF - 1007

Indicators



Refbacks

  • There are currently no refbacks.


Copyright (c) 2016 Miłosz Andrzej Huber

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.