Carbon and oxygen isotope variability among foraminifera and ostracod carbonated shells

François Fourel, François Martineau, Emoke Emoke Tóth, Agnes Görög, Gilles Escarguel, Christophe Lécuyer


This study investigates the effect of biological and environmental inter-individual variability on the meaning of d18O and d13C values acquired on small carbonated shells. First we present data obtained with a MultiPrep automated carbonate system on small sample sizes of a homogeneous carbonate material: Carrara marble. This demonstrates the capacities of the analytical system to reliably run small amounts of carbonates even down to 10 mg. Then we present two data sets obtained on real fossil samples of various size (sensu number of individual organisms) calibrated against the NBS19 carbonate standard. Both datasets evidence a clear trend of between-biological sample standard deviation increase for both d18O and d13C measurements when the number of pooled specimens per sample decreases. According to the results obtained from a systematic study of a geologically homogeneous sample of coeval fossil Elphidium foraminifera, we estimate that there is 95% of chances to reach between-biological sample standard deviation values higher than 1.02‰ (d18O) and 1.45‰ d13C) based on single-cell measurements. Such values are one order of magnitude higher than the instrumental standard deviations associated with these stable isotope ratios. Conversely, a minimum of 35 (d18O) and 44 (d13C) pooled specimens of Elphidium appears necessary to reach a between-sample standard deviation £ 0.25‰ with a probability of 95%. Such biological intrinsic and irreducible variability between coeval individuals, and thus samples, clearly questions the interest for single-cell analyses, more precisely, for coastal marine species, such as Elphidium, subject to many environmental changes during their life-time. Indeed, strong variations in salinity or temperature, as well as biogenic fractionation, could influence the isotopic composition of an individual specimen. Results might be less problematic for an average community including several tests. This paper underlines uncertainties linked to specific environments in which selected organisms live, especially for paleoceanographic or paleoclimatic reconstruction purposes where secular oxygen and carbon isotope variations typically range from 0.5 to 1.5‰.


stable isotope; foraminifera; ostracod; heterogeneity; single shell analysis

Full Text:



Bauch, H.A., Erlenkeuser, H., Bauch, D., Mueller-Lupp, T., Taldenkova E., 2004. Stable oxygen and carbon isotopes in modern benthic foraminifera from the Laptev Sea shelf: implications for reconstructing proglacial and profluvial environments in the Arctic. Mar. Micropal. 5, 285–300.

Billups, K., Schrag D.P., 2003. Paleotemperatures and ice volume of the past 27 Myr revisited with paired Mg/Ca and 18O/16O measurements on benthic foraminifera. Paleoceanography 17(1), 1003, doi: 10.1029/2000PA000567.

Billups, K., Spero H.J. 1995. Relationship between shell size, thickness and stable isotopes in individual planktonic foraminífera from two equatorial Atlantic cores. J. Foram. Res. 25, 24–37.

Chen, G., Hare, M.P., 2008. Cryptic ecological diversification of a planktonic estuarine copepod, Acartia tonsa. Molecul. Ecol. 17, 1451–1468.

Darling, K.F., Wade, C.M., 2008. The genetic diversity of planktic foraminifera and the global distribution of ribosomal RNA genotypes. Mar. Micropal. 67, 216–238.

Epstein, S., Buchsbaum, R., Lowenstam, H.A., Urey, H.C., 1953. Revised carbonate–water isotopic temperature scale. Geol. Soc. Am. Bull. 64, 1315–1326.

Fink, C., Baumann, K.-H., Groeneveld, J., Steinke, S., 2010. Strontium/Calcium ratio, carbon and oxygen stable isotopes in coccolith carbonate from different grain-size fractions in South Atlantic surface sediments. Geobios 43, 151-164.

Görög, A., 1992. Sarmatian foraminifera of the Zsámbék Basin, Hungary. Annales Universitatis Scientiarum Budapestinensis, Sectio Geologica 29, 31–153.

Hesselbo, S.P., Robinson, S.A., Surlyk, F., Piasecki, S., 2002. Terrestrial and marine extinction at the Triassic-Jurassic boundary synchronized with major carbon-cycle perturbation: A link to initiation of massive volcanism? Geology 30, 251–254.

Holmes, J.A., 1996. Trace-element and stable-isotope geochemistry of non-marine ostracod shells in Quaternary palaeoenvironmental reconstruction. J. Paleolimnol. 15, 223–235.

Huber, B.T., Norris, R.D., Macleod, K.G., 2002. Deep–sea paleotemperature record of extreme warmth during the Cretaceous. Geology 30, 123–126.

Huber, B.T., Hodell, D.A., Hamilton, C.P., 1995. Mid- to Late Cretaceous climate of the southern high latitudes: stable isotopic evidence for minimal equator-to-pole thermal gradients. Geol. Soc. Am. Bull. 107, 1164–1191.

Irigoien, X., Huisman, J., Harris, R.P., 2004. Global biodiversity patterns of marine phytoplankton and zooplankton. Nature 429, 863–867.

Jenkyns, H.C., Forster, A., Schouten, S., Damsté, J.S.S., 2004. High temperatures in the Late Cretaceous Artic Ocean. Nature 432, 888–892.

Joachimski, M.M., Breisig, S., Buggisch, W., Talent, J.A., Mawson, R., Gereke, M., Morrow, J.M., Day, J., Weddige, K., 2009. Devonian climate and reef evolution: insights from oxygen isotopes in apatite. Earth. Planet. Sci. Lett. 284, 599-609.

Kelly, D.C., Bralower, T.J., Zachos, J.C., Silva, I.P., Thomas, E., 1996. Rapid diversification of planktonic foraminífera in the tropical Pacific (ODP site 865) during the Late Paleocene thermal maximum. Geology 24, 423–4126.

Knowlton, N., 1993. Sibling species in the sea. Ann. Rev. Ecol. Syst. 24, 189–216.

Kump, L.R., Arthur M.A., 1999. Interpreting carbon-isotope excursions: carbonates and organic matter. Chem. Geol. 161, 181–198.

Lea, D.W., Pak, D.K., Belanger, C.L., Spero, H.J., Hall, M.A., Shackleton, N.J., 2006. Paleoclimate history of Galapagos surface waters over the last 135,000 yr. Quat. Sci. Rev. 25, 1152–1167.

Lécuyer, C., Picard, S., Garcia, J.-P., Sheppard, S.M.F., Grandjean, P., Dromart, G., 2003. Thermal evolution of Tethyan surface waters during the Midle-Late Jurassic: Evidence from 18O values of marine fish teeth. Paleoceanography 18(3), 1076, doi:10.1029/2002PA000863.

Magaritz, M., Krishnamurthy, R.V., Holser, W.T., 1992. Parallel trends in organic and inorganic carbon isotopes across the Permian/Triassic boundary. Am. J. Sci. 292, 727–739.

McCrea, J.M.,,1950. On the isotopic chemistry of carbonates and a paleotemperature scale. J. Chem. Phys. 18, 849–857.

Morard, R., Quillévéré, F., Escarguel, G., Ujiie, Y., de Garidel-Thoron, T., Norris, R.D., de Vargas C., 2009. Morphological recognition of cryptic species in the planktonic foraminifer Orbulina universa. Mar. Micropal. 71, 148–165.

Norris, R.D., Röhl, U., 1999. Carbon cycling and chronology of climate warming during the Palaeocene/Eocene transition, Nature 401, 775–778.

Pálfy, J., Demény, A., Haas, J., Hetényi, M., Orchard, M., Veto, I., 2001. Carbon isotope anomaly and other geochemical changes at the Triassic-Jurassic boundary from a marine section in Hungary. Geology 29, 1047–1050.

Pekar, S.F., DeConto, R.M., 2006. High-resolution ice-volume estimates for the early Miocene: Evidence for a dynamic ice sheet in Antarctica. Palaeogeogr. Palaeoclimatol. Palaeoecol. 231, 101–109.

Price, G.D., Sellwood, B.W., Corfield, R.M., Clarke, L., Cartlidge J.E., 1998. Isotopic evidence for palaeotemperatures and depth stratification of Middle Cretaceous planktonic foraminífera from the Pacific Ocean. Geol. Mag. 135, 183–191.

Pucéat, E., Lécuyer, C., Sheppard, S.M.F., Dromart, G., Reboulet, S., Grandjean, P., 2003. Thermal evolution of Cretaceous Tethyan marine waters inferred from oxygen isotope composition of fish tooth enamels. Paleoceanography 18(2), 1029, doi:10.1029/2002PA000823.

Röhl U., Bralower, T.J., Norris, R.D., Wefer, G., 2000. New chronology for the late Paleocene thermal maximum and its environmental implications. Geology 28, 927–930.

Roth, P. H., 1989. Ocean circulation and calcareous nannoplankton evolution during the Jurassic and Cretaceous. Palaeogeogr. Palaeoclimatol. Palaeoecol. 74, 111– 126.

Saraswati, P.K., 2004. Ontogenetic isotopic variation in foraminífera – Implications for palaeo prox. Current Science 86, 858–860.

Schidlowski, M., 1987. Application of stable isotopes to early biochemical evolution on Earth. Annu. Rev. Earth. Planet. Sci. 15: 47–72.

Schmidt, G.A., Mysak, L.A., 1996. Can increased poleward oceanic heat flux explain the warm Cretaceous climate? Paleoceanography 11, 579–593.

Shackleton, N. J., Opdyke, N.D., 1973. Oxygen isotope and paleomagnetic stratigraphy of equatorial Pacific core V28-2389: oxygen isotopes temperatures and ice volumes on a 105 and 106 year scale. Quat. Res. 3, 39–55.

Shackleton, N.J., 1967. Oxygen isotope analyses and Pleistocene temperatures reassessed. Nature 215, 15–17.

Shackleton, N.J., 1986. Paleogene stable isotope events. Palaeogeogr. Palaeoclimatol. Palaeoecolol. 57, 91–102.

Shackleton, N.J., Imbrie, J, Hall, M.A., 1983. Oxygen and carbon isotope record of East Pacific core V19-30: Implications for the formation of deep water in the late Pleistocene North Atlantic. Earth Planet. Sci. Lett. 65, 233–244.

Shackleton, N. J., 1986. Paleogene stable isotope events. Palaeogeogr. Palaeoclimatol. Palaeoecolol. 57, 91–102.

Shackleton, N.J., Kennett, J.P., 1975. Paleotemperature history of the Cenozoic and initiation of Antarctic glaciation: oxygen and carbon isotopic analyses in DSDP Sites 277, 279, and 281. Init. Rep. Deep Sea Drill. Proj. 29, 743–755.

Shuxi, C., Shackleton, N.L., 1990. New technique for study on isotopic fractionation between sea water and foraminiferal growing processes. Chin. J. Ocean. Limnol. 8, 299–305.

Stoll, H.M., Shimizu, N., 2009. Micropicking of nannofossils in preparation for analysis by secondary ion mass spectrometry. Nature Protocol 4, 1038–1043.

Stoll, H.M., Ziveri, P., 2002. Separation of monospecific and restricted coccolith assemblages from sediments using differential settling velocity. Mar. Micropal. 46, 209–221.

Tóth, E., 2008. Sarmatian (Middle Miocene) ostracod fauna from the Zsámbék Basin, Hungary. Geol. Pann. 36, 101–51.

Tóth, E., Görög, A., Lécuyer, C., Moissette, P., Balter, V., Monostori, M., 2010. Palaeoenvironmental reconstruction of the Sarmatian (Middle Miocene) Central Paratethys based on palaeontological and geochemical analyses of foraminifera, ostracods, gastropods and rodents. Geol. Mag. 147, 299–314.

Urey, H.C., 1947. The thermodynamic properties of isotopic substances. J. Chem. Soc. London 1947, 562–587.

Van Sebille E., Scussolini P., Durgadoo J. V., Peeters F. J. C., Biastoch A., Weijer W., Turney C., Paris C. B. and Zahn R., 2014. Ocean currents generate large footprints in marine palaeoclimate proxies. Nature Com., doi: 10.1038/ncomms7521.

Vargas (de), C., Norris, R., Zaninetti, L., Gibb, S.W., Pawlowski J., 1999. Molecular evidence of cryptic speciation in planktonic foraminifers and their relation to oceanic provinces. Proc. Nat. Acad. Sci. U.S. 96, 2864–2868.

Vargas (de), C., Sáez, A.G., Medlin, L.K., Thierstein, H.R., 2004. Superspecies in the calcareous plankton. In: Thierstein, H.R., Young, J. (Eds.), Coccolithophores — from Molecular Processes to Global Impact. Springer-Verlag, Heidelberg, Germany, pp. 271–298.

Zachos, J.C., Bohaty, S.M., John, C.M., McCarren, H., Kelly, D.C., Nielsen, T., 2007. The Palaeocene–Eocene carbon isotope excursion: constraints from individual shell planktonic foraminifer records. Phil. Trans. R. Soc. 365, 1829–1842.

Zachos, J.C., Pagani, M., Sloan, L., Thomas, E., Billups, K. 2001. Trends, rhythms, and aberrations in global climate 65 Ma to Present. Science 292, 686–693.

Zachos, J.C., Wara, M.W., Bohaty, S.M., Delaney, M.L., Rose-Petrizzo, M., Brill, A., Bralower, T.J., Premoli-Silva, I., 2003. A transient rise in tropical sea surface temperature during the Paleocene-Eocene Thermal Maximum. Science 302, 1551–1554.

Data publikacji: 2016-04-29 12:28:32
Data złożenia artykułu: 2016-01-08 15:49:33


  • There are currently no refbacks.

Copyright (c) 2016 François Fourel, François Martineau, Emoke Emoke Tóth, Agnes Görög, Gilles Escarguel, Christophe Lécuyer

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.