Dynamic Quantum Vacuum and Relativity

Davide Fiscaletti

Abstract


A model of a three-dimensional dynamic quantum vacuum with variable energy density is proposed. In this model, time we measure with clocks is only a mathematical parameter of changes running in quantum vacuum. Mass and gravity are carried by the variable energy density of quantum vacuum. Each elementary particle is a structure of quantum vacuum and diminishes the quantum vacuum energy density. Symmetry “particle – diminished energy density of quantum vacuum” is the fundamental symmetry of the universe which gives origin to the inertial and gravitational mass. Special relativity’s Sagnac effect in GPS system and important predictions of general relativity such as precessions of the planets, the Shapiro time delay of light signals in a gravitational field and the geodetic and frame-dragging effects recently tested by Gravity Probe B, have origin in the dynamics of the quantum vacuum which rotates with the earth.


Keywords


energy density of quantum vacuum, Sagnac effect, relativity, dark energy, Mercury precession.

Full Text:

PDF

References


S. F. Timashev, “Physical vacuum as a system manifesting itself on various scales – from nuclear physics to cosmology”, arXiv:1107.pdf [gr-qc] (2011).

C. Rovelli, Physics World 7, 11, 1-5 (2003).

C. Rovelli, “Loop quantum gravity”, (2008).

C. Rovelli, “A new look at loop quantum gravity”,

D. Fiscaletti and A. Sorli, SOP Transactions on Theoretical Physics 1, 3, 11-38 (2014).

D. Fiscaletti and A. Sorli, Annales UMCS Sectio AAA: Physics 69, 55-81 (2014).

https://einstein.stanford.edu/content/education/lithos/litho-fd.pdf.

M. Sato "A revisit of the papers on the theory of relativity: Reconsideration of the hypothesis of ether-dragging", http://arxiv.org/abs/0704.1942 (2009).

A. Sorli, D. Fiscaletti and T. Gregl, Physics Essays 26, 1, 113-115 (2013).

L.M. Caligiuri and A. Sorli, American Journal of Modern Physics 3, 2, 51-59 (2014).

E. Santos, International Journal of Theoretical Physics 50, 7, 2125-2133, DOI 10.1007/s10773-010-0633-6 (2010).

Yu B. Zeldovich, Zh. Eksp. & Teor. Fiz. Pis’ma 6, 883-884 (1967).

A. Rueda and B. Haisch, “Gravity and the quantum vacuum inertia hypothesis”, arXiv:gr-qc0504061v3 (2005).

L. Chiatti, “The transaction as a quantum concept”, in Space-time geometry and quantum events, I. Licata ed., pp. 11-44 (Nova Science Publishers, New York, 2014); e-print arXiv.org/pdf/1204.6636 (2012).

I. Licata, “Transaction and non-locality in quantum field theory”, European Physical Journal Web of Conferences (2013).

V. Sbitnev, “From the Newton’s laws to motion of the fluid and superfluid vacuum: vortex tubes, rings, and others”, arXiv:1403.3900v2 [physics.flu-dyn] (2014).

V. Sbitnev, Modern Physics Letters A 30, 35, 1550184 (2015); e-print arXiv:1507.03519v1 [physics.gen-ph].

V.I. Sbitnev, “Physical vacuum is a special superfluid medium”, in Selected Topics in Applications of Quantum Mechanics, M.R. Pahlavani ed., pp. 345-373, InTech, Rijeka (2015).

V.I. Sbitnev, “Navier-stokes equation describes the movement of a special superfluid medium”, Foundations of Physics, in press, 2015; e-print http://arxiv.org/abs/1504.07497.

G.E. Volovik, The Universe in a Helium Droplet, Clarendon Press, Oxford (2003).

M. W. Friedlander, A Thin Cosmic Rain: Particles from Outer Space, Harvard University Press, Harvard (2002).

S. Gao, “Why gravity is fundamental,” arXiv:1001-3029v3 (2010).

Y. Jack Ng, Physics Letters B 657, 1, 10-14 (2007).

Y. Jack Ng, Entropy 10, 441-461 (2008).

Y. Jack Ng, “Holographic quantum foam”, arXiv:1001.0411v1 [gr-qc] (2010).

Y. Jack Ng, “Various facets of spacetime foam”, arXiv:1102.4109.v1 [gr-qc] (2011).

S. Gao, “Three possible implications of spacetime discreteness”, http://philsci-archive.pitt.edu/9966/1/three_implications_of_spacetime_discreteness_2013_v6.pdf (2013).

G. Sagnac, Comptes Rendus 157, 708-710 and 1410-1413 (1913).

E. J. Post, Reviews of Modern Physics 39, 2, 475-493 (1967).

A. Tartaglia, in Relativity in Rotating Frames, G. Rizzi and M. L. Ruggiero eds., Kluwer Academic Publishers, Dordrecht (2004).

R. D. Klauber, Foundations of Physics Letters 16, 5, 447-463 (2003).

N. Ashby, Physics Today 55, 5, 41-47 (2002).

D. W. Allan, M. A. Weiss and N. Ashby, Science 228, 64-70 (1985).

L. Landau and E. Lifshitz, The Classical Theory of Fields, 4th ed., Pergamon, New York (1997).

P. Wolf and G. Petit, Physical Review A 56, 4405-4409 (1997).

K. Schwartzschild, Sitzungberichte Prüssiche Akademie der Wissenschaften, p. 198 (1916).

S. Weinberg, Gravitation and Cosmology, Principles and Applications of the General Theory of Relativity, John Wiley, New York (1972).

I. Shapiro et al., Physical Review Letters 26, 18, 1132-1135 (1971).

Y. Saburi, M. Yamamoto and K. Harada, IEEE Trans. Instr. Meas. 25, 4, 473-477 (1976).

C.-C. Su, Europhysics Letters 56, 2, 170-174 (2001).

C.-C. Su, European Journal of Physics C 21, 4, 701-715 (2001).

I. Newton, The Third Book of Optics, http://www.newtonproject.sussex.ac.uk (1718).

K. Brown, Reflections on relativity, Amazon (2011), pp. 421-431.

L. I. Schiff, Physical Review 4, 5, 215-217 (1960).

H. Pfister, “Dragging effects near rotating bodies and in cosmological models,” in J. B. Barbour and H. Pfister eds., From Newton’s bucket to quantum gravity, Birkhäuser, Boston (1995), p. 315.

I. Ciufolini et al., Science 279, 5359, 2100-2103 (1998).

I. Ciufolini and E. C. Pavlis, Nature 431, 7011, 958-960 (2004).

R. J. Adler, “The three-fold theoretical basis of the Gravity Probe B gyro precession calculation”, arXiv:1405.5511v1 [gr-qc] (2014).

M. Sato, "Interpretation of the slight periodic displacement in the Michelson-Morley experiments", http://arxiv.org/abs/physics/0605067 (2006).

D. Fiscaletti and A. Sorli, “Bijective epistemology and space-time”, Foundations of Science 20, 4, 387-398, (2015).

D. Fiscaletti and A. Sorli, “Perspectives of the Numerical Order of Material Changes in Timeless Approaches in Physics”, Foundations of Physics 45, 2, 105-133 (2015).

A. Sorli, The Physics of NOW, Amazon (2014).

P. Yourgrau, A World Without Time: The Forgotten Legacy of Godel and Einstein, Basic Books, New York (2006); available at http://findarticles.com/p/articles/mi_m1200/is_8_167/ai_n13595656.

BICEP 2 http://bicepkeck.org/.

http://physicsworld.com/cws/article/news/2014/sep/22/bicep2-gravitational-wave- result-bites-the-dust-thanks-to-new-planck-data (2014).

F. Wilczek, “Origins of Mass”, http://arxiv.org/pdf/1206.7114.pdf (2012).

NASA, http://map.gsfc.nasa.gov/universe/uni_shape.html (2013).

C. Pethick and H. Smith, Bose – Einstein condensation in diluited gas, Cambridge University Press, Cambridge (2002).




DOI: http://dx.doi.org/10.17951/aaa.2016.71.11
Data publikacji: 2017-02-23 09:57:45
Data złożenia artykułu: 2016-04-07 15:06:21

Refbacks

  • There are currently no refbacks.


Copyright (c) 2017 Davide Fiscaletti

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.