Diana Dudare, Maris Klavins


Peat deposits can be considered as archives of environmental changes and indicators of anthropogenic pollution. The character of element accumulation, the potential of metal ions to bind functional groups in the peat structure, the pH reaction, the presence of oxygen, the complexing compounds and inorganic ions are the main factors governing peat ability to accumulate major and trace elements. The aim of this paper has been to study the major and trace element accumulation in humic acids (HAs) in two well-characterized ombrotrophic peat profiles of Eipurs Bog and Dzelve Bog in Latvia and analyse factors affecting the element concentrations in HAs with reference to peat properties. The analysis of major elements (e.g., Ca, Fe, K, Mg, Na) and trace elements (e.g., As, Cd, Co, Cr, Cu, Ni, Pb, Se, Zn) was performed by total reflection X-ray fluorescence spectrometry. Thise c paper demonstrates that HAs are significant for several elements, however, they are not the dominant factor affecting the element accumulation. The concentration of trace elements in peat and in peat HAs depend not only on human-induced pollution (determining elevated concentrations of trace elements in upper layers of the bog). The study has revealed that for the accumulation of several toxic trace elements in peat (for instance, As, Pb and others) natural processes are of key importance.

Full Text:



E l l i s C.J., R o c h e f o r t L.: J. E c o l . , 94(2), 441, 2006.

S h i n d e l l D.T., W a l t e r B.P., F a l u v e g i G.: Geophys. Res. Lett., 31(21), 21, 2004.

K a l m y k o v a Y., S t r ö m v a l l A.M., S t e e n a r i B.M.: J. Hazard. Mater., 152(2), 885, 2008.

R i n g q u i s t L., H o l m g r e n A., O b o r n I.: Water Res., 36, 2394, 2002.

D a v i e s G., F a t a f t a h A., C h e r k a s s k i y A., G h a b o u r E.A., R a d w a n A., J a n s e n S.A., K o l l a S., P a c i o l l a M.D., S e i n L.T., B u e r m a n n W., B a l a s u ¬b r a m a n i a n M., B u d n i c k J., X i n g B.: J. Chem. Soc. Dalton Trans., 4047, 1997.

P o u r r e t O., D a v r a n c h e M., G r u a u G., D i a A.: Chem. Geol., 243, 128, 2007.

T i p p i n g E.: Cambridge University Press, 2002.

Z h o u P., Ya n H., G u B.: Chemosphere, 58, 1327, 2005.

M a r t i n e z - C o r t i z a s A., G a r c i a - R o d e y a E., We i s s D.: Sci. Total Environ., 292, 1, 2002.

S h o t y k W., We i s s D., A p p l e b y P.G., C h e b u r k i n A.K., F r e i R., G l o o r M., K r a m e r s J.D., R e e s e S., v a n d e r K n a a p W.O.: Science, 281, 1635, 1998.

O r r u H., O r r u M.: Global Planet. Change, 53, 249, 2006.

S h o t y k W.: Sci. Total Environ., 292, 19, 2002.

G o n d a r D., L o p e z R., F i o l S., A n t e l o J.M., A r c e F.: Geoderma, 126, 367, 2005.

Z a c c o n e C., S o l e r - R o v i r a P., P l a z a C., C o c o z z a C., M i a n o T.M.: J. Haz. Mat., 167(1/3), 987, 2009.

Z a c c o n e C., C o c o z z a C., C h e b u r k i n A.K., S h o t y k W., M i a n o T.M.: Appl. Geochem., 23, 25, 2008.

Z a c c o n e C., C o c o z z a C., C h e b u r k i n A.K., S h o t y k W., M i a n o T.M.: Geo¬derma, 141, 235, 2007.

A e s c h b a c h e r M., S a n d e r M., S c h w a r z e n b a c h R.P.: Sci. Technol., 44, 87, 2010.

C h o p p i n G.R.: The role of humics in actinide behavior in ecosystems. In: Choppin G.R., Khankhasayev M.Kh. (Eds.), Chemical Separation Technologies and Related Methods of Nuclear Waste Management. Kluwer Academic Publishers, 247, 1999.

F a l k o w s k i P., S c h o l e s R.J., B o y l e E., C a n a d e l l J., C a n f i e l d D., E l s e r J., G r u b e r N., H i b b a r d K., H o g b e r g P., L i n d e r S., M a c k e n z i e F.T., M o o r e B., P e d e r s e n T., R o s e n t h a l Y., T a n K.H.: Humic Matter in Soil and the Environment: Principles and Controversies. N.Y.: Marcel Dekker, 2003.

F e n g l e r G., G r o s s m a n D., K e r s t e n M., L i e b e z e i t G.: Marine Pollut. Bullet., 28, 143, 1994.

R i i s e G., S a l b u B.: Sci. Total Environ., 81/82, 137, 1989.

K u s k e E., S i l a m i k e l e I., K a l n i n a L., K l a v i n s M.: Peat formation conditions and peat properties: a study of two ombrotrophic bogs in Latvia. In: Klavins M. (Eds.), Mires and Peat. Riga, University of Latvia Press, 57, 2010.

S i l a m i k e l e I., N i k o d e m u s O., K a l n i n a L., P u r m a l i s O., S i r e J., K l a ¬v i n s M.: Properties of peat in ombrotrophic bogs depending on the humification process. In: Klavins M. (Eds.), Mires and Peat. Riga, University of Latvia Press, 74, 2010.

M i s a n s J., M u r n i e k s A., S t r a u t n i e k s I.: Latvijas kvartargeologiska karte (Qua¬ternary Geologic Map of Latvia), M 1:200 000, page 32. (Jelgava). State Geological Survey of Latvia, Latvia (In Latvian), 2001.

M a c C a r t h y P.: Geoderma, 16, 179, 1976.

K r a c h l e r M., S h o t y k W., E m o n s H.: Anal. Chim. Acta, 432, 303, 2001.

C a b a n i s s S.E.: Environ. Sci. Technol., 26, 1133, 1992.

M a l t e r e r T., Ve r r y E., E r j a v e c J.: Soil Sci. Soc. Am. J., 56(4), 1200, 1992.

P a r e n t L.E., C a r o n J.: Physical properties of organic soils. In: Soil sampling and Meth¬ods of Analysis. In: Carter M.R. (Ed.), Lewis Publishers, Boca Raton, FL, 441, 1993.

L i s h t v a n I.I., K o r o l N.T.: Basic Properties of Peat and Methods for Their Determina¬tion. Minsk: Nauka i Teknika, 320 (in Russian), 1975.

S c h n i t z e r M.: Agronomy Series No. 9. American. Society of Agronomy, Madison W.I., Organic matter characterization. In: Miller R.H., Keeney D.R. (Eds.), Methods of Soil Anal¬ysis, 581, 1982.

T a n K.H.: Principles of Soil Chemistry. Marcel Dekker, Inc., New York, NY, 1982.

DOI: http://dx.doi.org/10.17951/pjss.2012.45.2.147
Data publikacji: 2016-04-05 12:07:11
Data złożenia artykułu: 2016-04-05 11:34:21


Total abstract view - 76
Downloads (from 2020-06-17) - PDF - 2



  • There are currently no refbacks.

Copyright (c) 2016 Diana Dudare, Maris Klavins

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.