LOSS-ON-IGNITION AS AN ESTIMATE OF TOTAL ORGANIC CARBON IN THE MOUNTAIN SOILS

Oskar Bojko, Cezary Kabała

Abstract


Due to the ease and low cost of implementation, a commonly used method of determining the humus content in soils is the loss-on-ignition (LOI) method. Several regression equations and transformation factors are reported for LOI conversion to soil organic matter (SOM) or total organic carbon (TOC) content. The vast majority of the conversion factors have been developed for surface horizons of lowland soils, while there are only few findings from the mountainous areas. 476 mineral and 79 organic (forest litter) samples from 31 soil profiles located in different altitude zones of the Karkonosze Mountains and under different vegetation were used for analysis. LOI was determined by the drying-weighing method and TOC by the dry combustion method with CO2 absorption. The average LOI/TOC ratio was about 2, but varied in accordance to LOI value. At the LOI value above 8–10%, the LOI/TOC is maintained at a constant level of 2.0, but with a decreasing LOI it may significantly extend, up to 20 at LOI <1%. In the mountain soils, the best compatibility of TOC determined and estimated based on LOI was obtained when using different conversion factors ( 7.3, 5.0, 3.1 and 2.0) for the four LOI ranges (0–2, 2–4, 4–8, and > 8%, respectively) or when using separate regression equations for LOI of <8 and >8%. Because of huge TOC overestimation by LOI method at LOI values lower than 8–10%, the conversion LOI to TOC is not recommended, unless the direct measurement of TOC content is currently unavailable (e.g. in archival databases).1

Full Text:

PDF

References


B a l l D. F.: J. Soil Sci., 15 (1), 84, 1964.

B a r i l l e-B o y e r A. L., B a r i l l e L., M a s s e H., R a z e t D., H e r a l M.: Estuarine Coastal and Shelf Science, 58, 147, 2003.

B o g d a A., C h o d a k T., S z e r s z e ń L.: Właściwości i skład minerałów ilastych gleb Dolnego Śląska. Wyd. AR, Wrocław, 89, 1998.

C h r i s t e n s e n B. T., M a l m r o s P. A.: Holarctic Ecology, 5–4, 376, 1982.

C r e s s e r M. S., G o n z a l e z R. L., L e o n A.: Geoderma, 140, 132, 2007.

D e g ó r s k i M.: Monitoring Środowiska Przyrodniczego, 6, 75, 2005.

F a r m e r J., M a t t h e w s R., S m i t h P., L a n g a n C., H e r g o u a l c h K., V e r c h o t L. S m i t h J. U.: Geoderma, 214–215, 177, 2014.

G a ł k a B., Ł a b a z B.: SYLWAN, 158 (1), 18, 2014.

G a r t e n J r C. T.: Geoderma, 167–168, 30, 2011.

G ą s i o r e k M., N i c i a P.: Woda-Środowisko-Obszary Wiejskie, 10, 33, 2010.

H o w a r d P. J. A., H o w a r d D. M.: Biol Fertil Soils, 9, 306, 1990.

I USS Working Group WRB.: World Reference Base for Soil Resources 2014. World Soil Resources Reports No. 153. FAO, Rome, 2014.

K a b a ł a C., B o g a c z A., Ł a b a z B., S z o p k a K ., W a r o s z e w s k i J.: Różnorodność, dynamika i zagrożenia gleb. [In:] Knapik R., Raj A. (Ed.) Przyroda Karkonoskiego Parku Narodowego. Karkonoski Park Narodowy, Jelenia Góra: 91, 2013.

K a b a ł a C., B o g a c z A., W a r o s z e w s k i J., O c h y r a S.: Roczn. Glebozn, 49 (1), 90, 2008.

P o l s k i e T o w a r z y s t w o G l e b o z n a w c z e: Roczn. Glebozn., 62 (3), 2011.

S k i b a S., K a c p r z a k A., S z y m a ń s k i W ., M u s i e l o k Ł.: Roczn. Bieszcz., 19, 335, 2011.

S z a v a-K o v a t s R.: Communications in Soil Science and Plant Analysis, 40 (17–18), 2712, 2009.

W a n g J. P., W a n g X. J., Z h a n g J.: Pedosphere, 23(5), 593, 2013.




DOI: http://dx.doi.org/10.17951/pjss.2014.47.2.71
Data publikacji: 2016-01-29 09:01:00
Data złożenia artykułu: 2015-05-20 10:35:09

Refbacks

  • There are currently no refbacks.


Copyright (c) 2015 Oskar Bojko, Cezary Kabała

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.