Effect of organic farming on soil microbiological parameters

Karolina Furtak, Anna Gałązka


All over the world, including Poland, interest in the organic farming is growing. It is based on an attempt to minimize human impact on the environment while maintaining the natural functionality and productivity of the agricultural system. At the same time, every human activity in the natural environment results in greater or lesser changes in the soil ecosystem. Organic farming also has an impact on physical and chemical parameters and soil biological activity. These changes should be monitored and considered in the context of long-term land management. This review focuses on the impact of the organic farming system on soil biological activity and diversity of soil microorganisms.


organic farming; soil microorganisms; soil quality

Full Text:



Bonanomi, G., De Filippis, F., Cesarano, G., La Storia, A., Ercolini, D., Scala, F., 2016. Organic farming induces changed in soil microbiota affect agroecosystem functions. Soil Biology & Biochemistry, 103: 327–336. DOI: /10.1016/j.soilbio.2016.09.005.

Bulluck III, L.R., Brosius, M., Evanylo, G.K., Ristaino, J.B., 2002. Organic and synthetic fertility amendments influence soilmicrobial, physical and chemical properties on organic and conventional farms. Applied Soil Ecology, 19: 147–160. DOI: 10.1016/S0929-1393(01)00187-1.

Caporali, F., Mancinelli, R., Campiglia, E., 2003. Indicators of Cropping System Diversity in Organic and Conventional Farms in Central Italy. International Journal of Agricultural Sustainability, 1(1): 6772. DOI: /10.3763/ijas.2003.0107.

Doran, J.W., Parkin, T.B., 1994. Defining and assessing soil quality. In: J.W. Doran, D.C. Coleman, D.F. Bezdicek, B.A. Stewart (eds.), Defining Soil Quality for a Sustainable Environment, Soil Science Society of America, Madison, pp. 3–21.

Düring, R.A., Thorsten, H., Stefan, G., 2002. Depth distribution and bioavailability of pollutants in long-term differently tilled soils. Soil and Tillage Research, 66: 183–195. DOI: 10.1016/S0167-1987(02)00026-0.

European Environment Agency (EEA), 1998. Europe’s Environment: The Second Assessment. Aartus, Denmark.

Furtak, K. Gawryjołek, K., Gajda, A.M., Gałązka, A., 2017. Effects of maize and winter wheat grown under different cultivation techniques on biological activity of soil. Plant Soil Environment, 63, 10: 449–454. DOI: 10.17221/486/2017-PSE.

Furtak, K., Gajda, A.M., 2017. Activity of dehydrogenases as an indicator of soil environment quality. Polish Journal of Soil Science, 50(1): 33–40. DOI: 10.17951/pjss/2017.50.1.33.

Furtak, K., Gajda, A.M., 2018. Biochemical methods for the evaluation of the functional and structural diversity of microorganisms on the soil environment (in Polish). Postępy Mikrobiologii, 57(2), 194–202.

Gajda, A., Martyniuk, S., 2005. Microbial biomass C and N and activity of enzymes in soil under winter wheat grown in different crop management systems. Polish Journal of Environmental Studies, 14: 159–163.

Gajda, A.M., Czyż, E.A., Dexter, A.R., 2016. Effects of long-term use of different farming systems on some physical, chemical and microbiological parameters of soil quality. International Agrophysics, 30: 165–172. DOI: 10.1515/intag-2015-0081 http://www.international-agrophysics.org/en/artykul/866

Gajda, A.M., Martyniuk, S., Stachyra, A.M., Wróblewska, B., Zięba, S., 2000. Relations between microbiological and biochemical properties of soil under different agrotechnical conditions and its productivity. Polish Journal of Soil Science, 33(2): 55–60.

Gajda, A.M., Przewłoka, B., 2012. Soil biological activity as affected by tillage intensity. International Agrophysics, 26(1): 15–23.

Gałązka, A., Gawryjołek, K., Gajda, K., Furtak, K., Księżniak, A., Jończyk, K., 2018. Assessment of glomalins content in the soil under winter wheat from different crop production systems. Plant Soil and Environment, 64(1): 32–37. DOI: /10.17221/726/2017-PSE.

Gałązka, A., Łyszcz, M., Abramczyk, B., Furtak, K., Grządziel, J., Czaban, J., Pikulicka, A., 2016. Biodiversity of the soil environment – review of parameters and methods in soil biodiversity analyses. Monografie i Rozprawy Naukowe IUNG–PIB, Puławy, 49 (in Polish)

Gomiero, T., Pimentel, D., Paoletti, M.G., 2011. Environmental impact of different agricultural management practices: conventional vs. organic agriculture. Critical Reviews in Plant Sciences, 30(1–2): 95–124. DOI: 10.1080/07352689.2011.554355.

Hartmann, M., Frey, B., Mayer, J., Meader, P., Widmer, F., 2015. Distinct soil microbial diversity under long-term organic and conventional farming. The ISME Journal, 9(5): 1177–1194.

Hiddink, G.A., van Bruggen, A.H.C., Termorshuizen, A.J., Raaijmakers, J.M., Semenov, A.V., 2005. Effect of organic management of soils on suppressiveness to Gaeumannomyces graminis var. tritici and its antagonist, Pseudomonas fluorescens. European Journal Plant Pathology, 113: 417–435.




Kabiri, V., Raiesi, F., Ghazavi, M.A., 2016. Tillage effects on soil microbial biomass, SOM mineralization and enzyme activity in a semi-arid Calcixerepts. Agriculture, Ecosystems and Environment, 232: 73–84. DOI: 10.1016/j.agee.2016.07.022.

Lagomarsino, A., Moscatelli, M.C., Di Tizio, A., Mancinelli, R., Grego, S., Marinari, S., 2009. Soil biochemical indicators as a tool to assess the short-term impact of agricultural management on changes in organic C in a Mediterranean environment. Ecological Indicators, 9: 518–527. DOI:10.1016/j.ecolind.2008.07.003.

Lori, M., Symnaczik, S., Mader, P., De Deyn, G., Gattinger, A., 2017. Organic farming enhances soil microbial abundance and activity – a meta-analysis and meta-regression. PLOS ONE, 12(7): e0180442. DOI: 10.1371/journal.pone.0180442.

Lupatini, M., Korthals, G.W., de Hollander, M., Janssens, T.K.S., Kuramae, E.E., 2017. Soil microbiome is more heterogeneous in organic than in conventional farming system. Frontiers in Microbiology, 7: 2064. DOI: 10.3389/fmicb.2016.02064

Melero, S., Porras, J.C.R, Herencia, J.F., Madejon, E., 2006. Chemical and biochemical properties in a silty loam soil under conventional and organic management. Soil and Tillage Research, 90(1–2): 162–170. DOI: 10.1016/j.still.2005.08.016.

Mikanová, O., Javůrek, M., Šimon, T., Friedlová, M., Vach, M., 2009. The effect of tillage systems on some microbial characteristics. Soil and Tillage Research, 105: 72–76. DOI: 10.1016/j.still.2009.05.010.

Mohammadi, K., Heidari, G., Javaheri, M., Karimi-Nezhad, M.T., 2013. Soil microbial response to tillage systems and fertilization in a sunflower rhizosphere. Archives of Agronomy and Soil Science, 59: 899–910. DOI: 10.1080/03650340.2012.688197.

Paull, J., 2010. From France to the World: The International Federation of Organic Agriculture Movements (IFOAM). Journal of Social Research & Policy, 1(2): 93–102.

Pociejowska, M., Natywa, M., Gałazka, A., 2014. Stimulation of plant growth by bacteria PGPR. Kosmos, 63(4): 603–610.

Reeve, J.R., Hoagland, L.A., Villalba, J.J., Carr, P.M., Atucha, A., Cambardella, C., Davis, D.R., Delate, K., 2016. Organic farming, soil health, and food quality: Considering possible links. In: D.L. Sparks (ed.), Advances in Agronomy, Academic Press, Volume 137, Chapter 6, pp. 319–367. DOI: 10.1016/bs.agron.2015.12.003.

Sikora, S., Mrkonjic, M., Kisic, J., 2011. Importance of the soil microbial state – experience from the south-east European region. In: Miransari M. (eds.), Soil Tillage and Microbial Activities. India: Research Signpost, pp. 145–154.

Sugiyama, A., Vivanco, J.M., Jayanty, S.S., Manter, D.K., 2010. Pyrosequencing assessment of soil microbial communities in organic and conventional potato farms. Plant Disease, 94(11): 1329–1335. DOI: 10.1094/PDIS-02-10-0090.

Tautages, N.E., Sullivan, T.S., Reardon, C.L., Burke, I.C., 2016. Soil microbial diversity and activity linked to crop yield and quality in a dryland organic wheat production system. Applied Soil Ecology, 109: 258–268. DOI: 10.1016/j.apsoil.2016.09.003

Tscharntke, T., Clough, Y., Wanger, T.C., Jackson, L., Motzke, I., Perfecto, I., et al., 2012. Global food security, biodiversity conservation and the future of agricultural. Biological Conservation, 151: 53–59. DOI: 10.1016/j.biocon.2012.01.068.

Wang, W., Wang, H., Feng, Y., Wang, L., Xiao, X., Xi, Y., Luo, X., Sim, R., Ye, X., Huang, Y., Zhang, Z., Cui, Z., 2016. Consistent responses of the microbial community structure to organic farming along the middle and lower reaches of the Yangtze River. Scientific Reports, 6: 35046. DOI: 10.1038/srep35046.

Willer, H., Lernoud, J. (eds.), 2018. The World of Organic Agriculture. Statistics and Emerging Trends 2018. Research Institute of Organic Agriculture (FiBL), Frick, and IFOAM – Organics International, Bonn: Table 2 and 3.

Wittwer, R. et al., 2018. Impact of conventional, organic and conservation agriculture on soil functions and multifunctionality. 20th EGU General Assembly, EGU2018. Proceedings from the conference held 4–13 April 2018 in Vienna, Austria, p. 17002

Wolińska, A., Górniak, D., Zielenkiewicz, U., Goryluk-Salmonowicz, A., Kuźniar, A., Stępniewska, Z., Błaszczyk, M. 2017. Microbial biodiversity in arable soils is affected by agricultural practices. International Agrophysics, 31: 259–271. DOI: 10.1515/intag-2016-0040.

Wolińska, A., Stępniewska, Z., Pytlak, A., 2015. The effect of environmental factors on total soil DNA content and dehydrogenase activity. Archives of Biological Sciences, 67(2): 493–501. DOI: 10.2298/ABS140120013W.

Wolińska, A., Szafranek-Nakonieczna, A., Banach, A., Błaszczyk, M., Stępniewska, Z., 2016. The impact of agricultural soil usage on activity and abundance of ammonifying bacteria in selected soils from Poland. Springer Plus, 5: 565. DOI: 10.1186/s40064-016-2264-8.

DOI: http://dx.doi.org/10.17951/pjss.2019.52.2.259
Data publikacji: 2019-12-18 21:16:37
Data złożenia artykułu: 2018-08-01 09:47:09


  • There are currently no refbacks.

Copyright (c) 2019 Karolina Furtak, Anna Gałązka

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.