Three types of reproducing kernel Hilbert spaces of polynomials
Abstract
Keywords
Full Text:
PDFReferences
Askey, R., Orthogonal Polynomials and Special Functions, Society for Industrial Mathematics, Philadelphia, PA, 1975.
Baik, J., Kriecherbauer, T., McLaughlin, K. T.-R., Miller, P. D., Discrete Orthogonal Polynomials, Asymptotics and Applications, Princeton University Press, Princeton, NJ, 2007.
Iske, A., Approximation Theory and Algorithms for Data Analysis, Springer, Cham, 2018.
Jorgensen, P., Tian, F., Discrete reproducing kernel Hilbert spaces: sampling and distributions of Dirac-masses, J. Mach. Learn. Res. 16 (2015), 3079–3114.
Pasternak-Winiarski, Z., On weights which admit reproducing kernel of Bergman type, Internat. J. Math. Math. Sci. 15 (1) (1992), 1–14.
Szego, G., Orthogonal Polynomials, American Mathematical Society, Providence, RI, 1975.
Żynda, T. Ł., On weights which admit reproducing kernel of Szego type, J. Contemp. Math. Anal. 55 (5), (2020), 320–327.
DOI: http://dx.doi.org/10.17951/a.2023.77.1.35-46
Date of publication: 2023-09-30 21:35:45
Date of submission: 2023-09-26 21:29:38
Statistics
Indicators
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 Tomasz Łukasz Żynda