The vertical prolongation of the projectable connections

Anna Bednarska


We prove that any first order \(\mathcal{F}_2\mathcal{M}_{m_1,m_2,n_1,n_2}\)-natural operator transforming projectable general connections on an \((m_1,m_2, n_1, n_2)\)-dimensional fibred-fibred manifold \(p = (p, p) : (p_Y : Y \to Y ) \to (p_M : M \to M)\) into general connections on the vertical prolongation \(V Y \to M\) of \(p: Y \to M\) is the restriction of the (rather well-known) vertical prolongation operator \(\mathcal{V}\) lifting general connections \(\overline{\Gamma}\) on a fibred manifold \(Y \to M\) into \(\mathcal{V}\overline{\Gamma}\) (the vertical prolongation of \(\overline{\Gamma}\)) on \(V Y \to M\).


Fibred-fibred manifold; natural operator; projectable connection

Full Text:



Doupovec, M., Mikulski, W. M., On the existence of prolongation of connections, Czechoslovak Math. J., 56 (2006), 1323-1334.

Kolar, I., Connections on fibered squares, Ann. Univ. Mariae Curie-Skłodowska Sect. A 59 (2005), 67-76.

Kolar, I., Michor, P. W. and Slovak, J., Natural Operations in Differential Geometry, Springer-Verlag, Berlin, 1993.

Kolar, I., Mikulski, W. M., Natural lifting of connections to vertical bundles, The Proceedings of the 19th Winter School “Geometry and Physics” (Srn´ı, 1999). Rend.

Circ. Mat. Palermo (2) Suppl. No. 63 (2000), 97-102.

Kurek, J., Mikulski, W. M., On prolongations of projectable connections, Ann. Polon. Math, 101 (2011), no. 3, 237-250.

Mikulski, W. M., The jet prolongations of fibered-fibered manifolds and the flow operator, Publ. Math. Debrecen 59 (2001), no. 3-4, 441-458.

Kolar, I., Some natural operations with connections, J. Nat. Acad. Math. India 5 (1987), no. 2, 127-141.

Data publikacji: 2016-07-24 20:22:23
Data złożenia artykułu: 2016-07-23 09:38:56


  • There are currently no refbacks.

Copyright (c) 2012 Anna Bednarska