The vertical prolongation of the projectable connections

Anna Bednarska

Abstract


We prove that any first order F2Mm1,m2,n1,n2-natural operator transforming projectable general connections on an (m1,m2,n1,n2)-dimensional fibred-fibred manifold p=(p,p):(pY:YY)(pM:MM) into general connections on the vertical prolongation VYM of p:YM is the restriction of the (rather well-known) vertical prolongation operator V lifting general connections ¯Γ on a fibred manifold YM into V¯Γ (the vertical prolongation of ¯Γ) on VYM.

Keywords


Fibred-fibred manifold; natural operator; projectable connection

Full Text:

PDF

References


Doupovec, M., Mikulski, W. M., On the existence of prolongation of connections, Czechoslovak Math. J., 56 (2006), 1323-1334.

Kolar, I., Connections on fibered squares, Ann. Univ. Mariae Curie-Skłodowska Sect. A 59 (2005), 67-76.

Kolar, I., Michor, P. W. and Slovak, J., Natural Operations in Differential Geometry, Springer-Verlag, Berlin, 1993.

Kolar, I., Mikulski, W. M., Natural lifting of connections to vertical bundles, The Proceedings of the 19th Winter School “Geometry and Physics” (Srn´ı, 1999). Rend.

Circ. Mat. Palermo (2) Suppl. No. 63 (2000), 97-102.

Kurek, J., Mikulski, W. M., On prolongations of projectable connections, Ann. Polon. Math, 101 (2011), no. 3, 237-250.

Mikulski, W. M., The jet prolongations of fibered-fibered manifolds and the flow operator, Publ. Math. Debrecen 59 (2001), no. 3-4, 441-458.

Kolar, I., Some natural operations with connections, J. Nat. Acad. Math. India 5 (1987), no. 2, 127-141.




DOI: http://dx.doi.org/10.2478/v10062-012-0001-5
Date of publication: 2016-07-24 20:22:23
Date of submission: 2016-07-23 09:38:56


Statistics


Total abstract view - 953
Downloads (from 2020-06-17) - PDF - 644

Indicators



Refbacks

  • There are currently no refbacks.


Copyright (c) 2012 Anna Bednarska