On the Courant bracket on couples of vector fields and \(p\)-forms

Miroslav Doupovec, Jan Kurek, Włodzimierz Mikulski

Abstract


If \(m\geq p+1\geq 2\) (or \(m=p\geq 3\)), all  natural bilinear  operators \(A\) transforming pairs of couples of vector fields and \(p\)-forms on \(m\)-manifolds \(M\) into couples of vector fields and \(p\)-forms on \(M\) are described. It is observed that  any natural skew-symmetric bilinear operator \(A\) as above coincides with the generalized Courant bracket up to three (two, respectively) real constants.

Keywords


Natural operator; vector field; p-form

Full Text:

PDF

References


Coimbra, A., Minasian, R., Triendl, H.,Waldram, D., Generalized geometry for string corrections, J. High Energy Phys. 2014 (11) (2014), 160.

Courant, T. J., Dirac manifolds, Trans. Amer. Math. Soc. 319 (2) (1990), 631-661.

Doupovec, M., Kurek, J., Lifts of tensor fields to the cotangent bundle, in: Differential Geometry and Applications (Brno, 1995), Masaryk University, Brno, 1996, 141-150.

Doupovec, M., Kurek, J., Mikulski, W. M., The natural brackets on couples of vector fields and 1-forms, Turkish J. Math. 42 (4) (2018), 1853-1862.

Dębecki, J., Linear liftings of skew symmetric tensor fields of type (1,2) to Weil bundles, Czechoslovak Math. J. 60(135) (4) (2010), 933-943.

Gualtieri, M., Generalized complex geometry, Ann. of Math. (2) 174 (1) (2011), 75-123.

Hitchin, N., Generalized Calabi-Yau manifolds, Q. J. Math. 54 (3) (2003), 281-308.

Kolar, I., Michor, P. W., Slovak, J., Natural Operations in Differential Geometry, Springer-Verlag, Berlin, 1993.

Kurek, J., Mikulski, W. M., The natural linear operators (T^*rightsquigarrow TT^{(r)}), Colloq. Math. 95 (1) (2003), 37-47.

Mikulski, W. M., Liftings of 1-forms to the linear r-tangent bundle, Arch. Math. (Brno) 31 (2) (1995), 97-111.




DOI: http://dx.doi.org/10.17951/a.2018.72.2.29
Data publikacji: 2018-12-22 22:03:12
Data złożenia artykułu: 2018-12-21 22:16:46


Statistics

Total abstract view - 406
Downloads (from 2020-06-17) - PDF - 99

Indicators



Refbacks

  • There are currently no refbacks.


Copyright (c) 2018 Miroslav Doupovec, Jan Kurek, Włodzimierz Mikulski