On the existence of connections with a prescribed skew-symmetric Ricci tensor
Abstract
We study the so-called inverse problem. Namely, given a prescribed skew-symmetric Ricci tensor we find (locally) a respective linear connection.
Keywords
Linear connection; Ricci tensor
Full Text:
PDFReferences
Dusek, Z., Kowalski, O., How many are Ricci flat affine connections with arbitrary torsion?, Publ. Math. Debrecen 88 (3-4) (2016), 511-516.
Gasqui, J., Connexions a courbure de Ricci donnee, Math. Z. 168 (2) (1979), 167-179.
Gasqui, J., Sur la courbure de Ricci d’une connexion lineaire, C. R. Acad. Sci. Paris Ser A–B 281 (11) (1975), 389-391.
Kobayashi, S., Nomizu, K., Foundation of Differential Geometry, Vol. I, J. Wiley-Interscience, New York, 1963.
Opozda, B., Mikulski, W. M., The Cauchy-Kowalevski theorem applied for counting connections with a prescribed Ricci tensor, Turkish J. Math. 42 (2) (2018), 528-536.
DOI: http://dx.doi.org/10.17951/a.2018.72.2.37
Date of publication: 2018-12-22 22:03:12
Date of submission: 2018-12-21 22:26:47
Statistics
Total abstract view - 916
Downloads (from 2020-06-17) - PDF - 547
Indicators
Refbacks
- There are currently no refbacks.
Copyright (c) 2018 Jan Kurek, Włodzimierz Mikulski