Influence of methyl jasmonate on ginsenoside biosynthesis in suspension cultures of Panax quinquefolium L.

Ewa Kochan, Sylwia Caban, Grażyna Szymańska, Piotr Szymczyk, Anna Lipert, Paweł Kwiatkowski, Monika Sienkiewicz

Abstract


Panax quinquefolium L., belonging to the Araliaceae family, along with P. ginseng is one of the well-known species of ginseng. Multidirectional pharmacological action of this plant is attributed to triterpene saponins called ginsenosides. Pharmacopoeial raw material are roots obtained from the field crops which are time-consuming and require expensive agrotechnical procedures. Therefore, the new sources of ginseng biomass are sought such as in vitro suspension cultures. P. quinquefolium L. cell cultures, treated with the elicitation of methyl jasmonate (MJ) in concentration 50 and 250 μmol L-1, synthesize more ginsenosides than control cultures. The highest increase (2.2-fold) of all examined compounds was noted using 250 μmol L-1 MJ. In this condition, the predominantly quantitative metabolite was Rb1 ginsenoside belonging to protopanaxadiol derivatives.


Keywords


Panax quinquefolium suspension culture, methyl jasmonate, ginsenosides, elicitation

Full Text:

PDF

References


Belchí-Navarro S., Almagro L., Lijavetzky D., Bru R., Pedreño M.A. 2012. Enhanced extracellular production of trans-resveratrol in Vitis vinifera suspension cultured cells by using cyclodextrins and methyljasmonate. Plant Cell Rep. 31(1):81–89.

Bonfill M., Mangas S., Moyano E., Cusido R.M., Palazon J. 2011. Production of centellosides and phytosterols in cell suspension cultures of Centella asiatica. Plant Cell Tissue Organ. Cult. 104(1):61–67.

Choi K.T. 2008. Botanical characteristics, pharmacological effects and medicinal components of Korean Panax ginseng C. A. Meyer. Acta Pharmacol. Sin. 29(9): 1109–1118.

Ernst E. 2010. Panax ginseng: an overview of the clinical evidence. J. Ginseng Res. 34(4): 259–263.

Exposito O., Syklowska-Baranek K., Moyano E., Onrubia M., Bonfill M., Palazon J., Cusido R.M. 2010. Metabolic responses of Taxus media transformed cell cultures to the addition of methyl jasmonate. Biotechnol. Prog. 26(4):1145–1153.

Fang Y., Smith M.A.L., M.F. Pépin. (1999). Effects of exogenous methyl jasmonate in elicited anthocyanin-producing cell cultures of ohelo (Vaccinium phalae). In vitro Cell Dev. Biol. Plant 35(1):106-113.

Gaines J.L. 2004. Increasing alkaloid production from Catharanthus roseus suspensions through methyl jasmonate elicitation. Pharmaceutical Engineering. 24(4):1–6.

Gómez-Serranillos M.P. 2015. Potential neuroprotective activity of Ginseng in Parkinson’s disease: a review. J. Neuroimmune Pharmacol. 10(1):14–29. doi: 10.1007/s11481-014-9569-6.

Kim E.H., Kim I.H., Ha J.A., Choi K.T., Pyo S., Rhee D.K. 2013. Antistress effect of red ginseng in brain cells is mediated by TACE repression via PADI4. J. Ginseg Res. 37(3): 315–323.

Kim J.H. 2017. Pharmacological and medical applications of Panax ginseng and ginsenosides: a review for use in cardiovascular diseases. J. Ginseng Res. 1–6 article in press. https://doi.org/10.1016/j.jgr.2017.10.004.

Kim O.T., Bang K.H., Shin Y.S., Lee M.J., Jung S.J., Hyun D.Y., Kim Y.C., Seong N.S., Cha S.W., Hwang B. 2007. Enhanced production of asiaticoside from hairy root cultures of Centella asiatica (L.) Urban elicited by methyl jasmonate. Plant Cell Rep. 26(11):1941–1949.

Kim Y.S., Han J.Y., Lim S., Choi Y.E.2009. Ginseng metabolic engineering: regulation of genes related to ginsenoside biosynthesis. J. Med. Plants Res. 3(13),1270–1276.

KimY.S., Hahn E.J., Murthy H.N., Paek,K.Y. 2004. Adventitous root growth and ginsenoside accumulation in Panax ginseng cultures as affected by methyl jasmonate. Biotechnol. Lett. 26(21);1789–1792.

Kochan E., Balcerczak E., Lipert A., Szymańska G., Szymczyk P. 2018. Methyl jasmonate as a control factor of the synthase squalene gene promoter and ginsenoside production in American ginseng hairy root cultured in shake flasks and a nutrient sprinkle bioreactor. Industrial Crops and Products 115: 182–193.

Krzyżanowska J., Czubacka A., Pecio, L., Przybys M., Doroszewska T., Stochmal A., Oleszek W. 2011. The effects of jasmonic acid and methyl jasmonate on rosmarinic acid production in Mentha × piperita cell suspension cultures. Plant Cell Tissue Organ. Cult. 108(1):73–81.

Lee Y.S., Park H.S., Lee D.K., Jayakodi M., Kim N.H., Koo H.J., Lee S.C., Kim Y.J., Kwon S.W., Yang T.J. 2017. Integrated transcriptomic and metabolomic analysis of five Panax ginseng cultivars reveals the dynamics of ginsenoside biosynthesis. Front Plant Sci. 19, 8:1048. doi: 10.3389/fpls.2017.01048.

Lloyd G., McCown B. 1980. Commercially feasible micropropagation of mountain laurel, Kalmia latifolia, by use of shoot tip culture. Int. Plant Prop. Soc. Proc. 30:421 427.

Lu M.B., Wong H., Teng W. 2001. Effects of elicitation on the production of saponin in cell culture of Panax ginseng. Plant Cell Rep. 20(7):674–677.

Murashige T., Skoog F. 1962. A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol. Plant. 15:473–497.

Namdeo A.G. 2007. Plant cell elicitation for production of secondary metabolites: a review. Pharmacogn. Rev. 1(1):69–79.

Oliynyk S., Oh S. 2013. Actoprotective effect of ginseng: improving mental and physical performance. J. Ginseng Res. 37(2):144–166.

Park J.D., Rhee D.K., Lee Y.H. 2005. Biological activities and chemistry of saponins from Panax ginseng C. A. Meyer. Phytochem. Rev. 4(2-3):159–175.

Pengelly, A., Bennett, K. 2011. Appalachian plant monographs: Panax quinquefolius L., American ginseng. http://www.frostburg.edu/aces/appalachianplants.

Qi L-W., Wang Ch-Z., Yuan Ch-S (2011). Ginsenosides from American ginseng: Chemical and pharmacological diversity. Phytochemistry72(8):689–699. 10.1016/j.phytochem.2011.02.012.

Ramirez-Estrada K., Vidal-Limon H., Hidalgo D., Moyano E., Golenioswki M., Cusidó R.M., Palazon J. 2016. Elicitation, an effective strategy for the biotechnological production of bioactive high-added value compounds in plant cell factories. Molecules. 21(2):182. doi: 10.3390/molecules21020182.

Szymańska G., Kochan E., Szymczyk P. 2013. Field cultivation and in vitro cultures, rootforming callus cultures and adventitious root cultures, of Panax quinquefolium as a source of ginsenosides. Z. Naturforsch. C. 68:(11–12):482–488.

Thanh N.T., Murthy H.N., Yu K.W., Hahn E.J., Paek K.Y. 2005. Methyl jasmonate elicitation enhanced synthesis of ginsenoside by cell suspension cultures of Panax ginseng in 5-l balloon type bubble bioreactors. Appl. Microbiol. Biotechnol. 67(2):197–201.

Wang Q.J., Zheng L.P., Sima Y.H., Yuan H.Y., Wang W.J. (2013) Methyl jasmonate stimulates 20-hydroxyecdysone production in cell suspension cultures of Achyranthes bidentata. POJ 6(2):116–120.

Wang W., Zhang Z.Y., Zhong J.J. 2005. Enhancement of ginsenoside biosynthesis in highdensity cultivation of Panax notoginseng cells by various strategies of methyl jasmonate elicitation. Appl. Microbiol. Biotechnol. 67(6):752–758.

Wang W., Zhong J.J. 2002. Manipulation of ginsenoside heterogeneity in cell cultures of Panax notoginseng by addition of jasmonates. J. Biosci. Bioeng. 93(1):48–53.

Z hang C.H., Mei X.G., Liu L., Yu L.J. 2000. Enhanced paclitaxel production induced by the combination of elicitors in cell suspension of Taxus chinensis. Biotechnol Lett. 22(19):1561–564.




DOI: http://dx.doi.org/10.17951/c.2017.72.1.27-35
Data publikacji: 2018-07-16 14:19:11
Data złożenia artykułu: 2018-01-31 18:25:50

Refbacks

  • There are currently no refbacks.


Copyright (c) 2018 Ewa Kochan, Ewa Kochan, Sylwia Caban, Grażyna Szymańska, Piotr Szymczyk, Anna Lipert, Paweł Kwiatkowski, Monika Sienkiewicz

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.