Directions of Development and Research Gaps in the Prediction of Bank Bankruptcy or Restructuring

Arkadiusz Kurasz

Abstract


Theoretical background: The analysis presented in the article is grounded in contemporary theories concerning the prediction of banking crises and the application of predictive models in the financial sector. Particular emphasis is placed on concepts related to big data, artificial intelligence, and machine learning, which are increasingly pivotal in financial stability analyses. The article references global models such as logit and random forests, highlighting their potential and limitations within the specific context of local conditions, particularly in the Polish banking market. Key gaps in the existing literature are identified, underscoring the necessity of developing models that incorporate macroeconomic variables and local regulatory frameworks, thereby enabling the adaptation of global tools to regional environments more effectively.

Purpose of the article: The article aims to analyze the emerging trends in bankruptcy and restructuring prediction models for banks and identify key research gaps in the context of the Polish banking market, comparing it to global benchmarks. It discusses the increasing role of big data, artificial intelligence, and machine learning in predicting banking crises and assesses their applicability to smaller economies like Poland. The study examines global prediction models, such as logit, random forests, and big data-driven approaches, emphasizing the need to adapt them to local economic conditions.

Research methods: The study employs a comprehensive literature review methodology, critically evaluating existing predictive models and their applicability to the Polish banking market. A comparative analysis is conducted between global predictive models and local market conditions, with a focus on macroeconomic variables such as inflation, unemployment, and exchange rate volatility. The research also examines the challenges specific to Poland’s banking sector, particularly cooperative banks, and explores the integration of advanced technologies, such as big data and artificial intelligence, to enhance predictive accuracy. The methodological approach encompasses critical analysis, document review, and comparative evaluations, supported by expert insights, to identify key research gaps and propose tailored solutions for smaller economies like Poland.

Main findings: The study identifies significant gaps in the application of global predictive models to the Polish banking sector, particularly with regard to the unique challenges posed by local economic conditions and regulatory frameworks. It highlights the necessity of developing tailored models that integrate macroeconomic variables specific to Poland, such as inflation and currency volatility, to improve the accuracy of predictions. The findings underscore the growing potential of advanced technologies, including big data and artificial intelligence, in enhancing early warning systems for banking crises. Additionally, the research provides a comparative perspective, demonstrating the need for greater alignment between global approaches and local market realities, especially for cooperative banks and smaller financial institutions operating within the Polish economy.


Keywords


bankruptcy prediction; cooperative banks; prediction models; restructuring

Full Text:

PDF

References


Bowen, G.A. (2009). Document analysis as a qualitative research method. Qualitative Research Journal, 9(2), 27–40. https://doi.org/10.3316/QRJ0902027

Breiman, L. (2001). Random forests. Machine Learning, 45, 5–32. https://doi.org/10.1023/A:10109334043

Burnewicz, J. (2021). Filozofia i metodologia nauk ekonomicznych. PWN.

Chao, X., Ran, Q., Chen, J., Li, T., Qian, Q., & Ergu, D. (2022) Regulatory technology (Reg-Tech) in financial stability supervision: Taxonomy, key methods, applications and future directions, International. Review of Financial Analysis, 80. https://doi.org/10.1016/j.irfa.2022.102023

Chawla, N.V., Bowyer, K.W., Hall, L.O., & Kegelmeyer, W.P. (2002). SMOTE: synthetic minority over-sampling technique. Journal of Artificial Intelligence Research, 16, 321–357. https://doi.org/10.1613/jair.953

Citterio, A. (2024). Bank failure prediction models: Review and outlook. Socio-Economic Planning Sciences, 92. https://doi.org/10.1016/j.seps.2024.101818

Czechowska, I.D, & Kuśmierska, W. (2022). Uwarunkowania decyzji młodych klientów na rynku usług finansowych na przykładzie rachunków bankowych. Internetowy Kwartalnik Antymonopolowy i Regulacyjny, 11(7), 8–27. https://doi.org/10.7172/2299-5749.IKAR.7.11.1

Gasz, M. (2014). Uwarunkowania stabilności europejskiego sektora finansowego. Acta Universitatis Lodziensis. Folia Oeconomica, 2(301), 45–60. http://hdl.handle.net/11089/14852

Günönü, S., Altun, G., & Cavus, M. (2023). Bank failure prediction models addressing imbalanced data and out-of-time performance. In International Researchers, Statisticians, and Young Statisticians Congress (pp. 1–16). Istanbul, Turkey.

Jankowska, D. (2023). Determinanty oprocentowania konsumenckiego kredytu bankowego. Kortowski Przegląd Prawniczy, 4, 13–27. https://doi.org/10.31648/kpp.8774

Kasiewicz, S., & Rogowski, W. (2006). Założenia teoretyczne i doświadczenia międzynarodowe w zakresie oceny i prognozowania zagrożenia banków upadłością. Bezpieczny Bank, 31(2), 3–36.

Kristóf, T., & Virág, M. (2022). EU-27 bank failure prediction with C5.0 decision trees and deep learning neural networks. Research in International Business and Finance, 61, 101644. https://doi.org/10.1016/j.ribaf.2022.101644

Le, A.H., Pham, A.H.T., Doan, K.T., & Nguyen, T.P. (2023). The impact of financial development on economic stability: evidence from Asian countries. Polish Journal of Management Studies, 27(1). https://doi.org/10.17512/pjms.2023.27.1.10

Meyer, P., & Pifer, H. (1970). Prediction of bank failures. Journal of Finance, 25(4), 853–868. https://doi.org/10.1111/j.1540-6261.1970.tb00558.x

NBP. (2024). Financial Stability Report. https://nbp.pl/wp-content/uploads/2024/06/Raport-o-stabilnosci-systemu-finansowego.-Czerwiec-2024-EN.pdf

Olszak, M. (2014). Rola regulacji kapitałowych i podejmowania ryzyka przez banki w polityce pieniężnej. Oeconomia Copernicana, 5(1), 7–26. https://doi.org/10.12775/OeC.2014.001

Petropoulos, A., Siakoulis, V., Stavroulakis, E., & Vlachogiannakis, N.E. (2020). Predicting bank insolvencies using machine learning techniques. International Journal of Forecasting, 36(3), 1092–1113. https://doi.org/10.1016/j.ijforecast.2019.11.005

Purwanti, L., Effendi, S.A., Ibrahim, M., Cahyadi, R.T., & Prakoso, A. (2024). Prediction and comparison of bankruptcy models in banking sector companies in Indonesia. Educational Administration: Theory and Practice, 30(4), 4428–4440. https://doi.org/10.53555/kuey.v30i4.2224

Rozporządzenie Ministra Finansów z dnia 1 października 2010 r. – w sprawie szczególnych zasad rachunkowości banków, Dz.U. 2010, nr 191, poz. 1279, ze zm.

Shah, J., Rao, B., Mehta, Y., & Kurhade, S. (2022). Predicting bankruptcy and suggesting improvements on financial attributes using machine learning models. In 2022 3rd International Conference on Electronics and Sustainable Communication Systems (ICESC), Coimbatore, India (pp. 807–812). https://doi.org/10.1109/ICESC54411.2022.9885647

Stuhr, D.P., & Van Wicklen, R. (1974). Rating the financial condition of banks: A statistical approach to aid bank supervision. Federal Reserve Bank of New York Monthly Review, September, pp. 233–238.

Ustawa z dnia 29 sierpnia 1997 r. – Prawo bankowe, Dz.U. 1997, nr 140, poz. 939, ze zm.

Ustawa z dnia 7 grudnia 2000 r. – o funkcjonowaniu banków spółdzielczych, ich zrzeszaniu się i bankach zrzeszających, Dz.U. 2000, nr 119, poz. 1252, ze zm.

Wyrobek, J. (2018). Predicting bankruptcy at Polish companies: A comparison of selected machine learning and deep learning algorithms. Zeszyty Naukowe Uniwersytetu Ekonomicznego w Krakowie, 978(6), 41–60. https://doi.org/10.15678/ZNUEK.2018.0978.0603

Zhang, W (2023). Time is the Witness: Bank Failure Prediction with Machine Learning Models. A thesis submitted for the degree of Doctor of Philosophy. University of Bath, School of Management.

Zhao, H., Sinha, A.P., & Ge, W. (2009). Effects of feature construction on classification performance: An empirical study in bank failure prediction. Expert Systems with Applications, 36(2), 2633–2644. https://doi.org/10.1016/j.eswa.2008.01.053

Zygierewicz, M. (2024). Sektor bankowy w pierwszym półroczu 2023 roku. In K. Marchewka-Bartkowiak & K. Waliszewski (Eds.), Finanse wobec wyzwań Nowej Gospodarki (pp. 182–200). Wydawnictwo Uniwersytetu Ekonomicznego w Poznaniu. https://doi.org/10.18559/978-83-8211-229-0/12




DOI: http://dx.doi.org/10.17951/h.2025.59.2.105-119
Date of publication: 2025-09-02 13:03:26
Date of submission: 2024-11-25 09:33:20


Statistics


Total abstract view - 0
Downloads (from 2020-06-17) - PDF - 0

Indicators



Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Arkadiusz Kurasz

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.