Geomorfologia Rowu Puerto Rico i Rowu Kajmańskiego w kontekście ewolucji geologicznej Morza Karaibskiego

Polina Lemenkova

Streszczenie w języku polskim


W artykule opisano badania wybranych elementów rzeźby dna Morza Karaibskiego na tle budowy geologicznej, tektoniki oraz wybranych właściwości pola geofizycznego wpływającego na powstawanie rowów głębinowych. Analizę batymetrii wzdłuż Rowu Puerto Rico i Rowu Kajmańskiego wykonano z wykorzystaniem mapowania tematycznego, modelowania geomorfologicznego i analizy statystycznej. Wykorzystano zestaw narzędzi do tworzenia skryptów kartograficznych w środowisku Generic Mapping Tools (GMT). Dane obejmują numeryczny model batymetryczny o strukturze GRID z bazy GEBCO, globalny model geopotencjału EGM2008, anomalie grawitacyjne z uwzględnieniem redukcji wolnopowietrznej (redukcja Faye’a) z połączonego zestawu danych altymetrycznych z misji GEOS3/SEASAT/GEOSAT, numeryczny model miąższości osadów o strukturze GRID i rozdzielczości 5 minut z programu GlobSed oraz warstwy wektorowe w formacie GMT (linie brzegowe, sieć rzeczna, granice). Przekrój został wykonany z wykorzystaniem modułu „grdtrack”. Wyniki pokazały różnice między strukturą Rowu Puerto Rico i Rowu Kajmańskiego, na które wpływ miała ewolucja geologiczna. Średnie nachylenie zboczy rowu Puerto Rico (67,5°W i 19,90°N do 64,1°W i 19,82°N) wynosi 13°. W części północnej zbocza są bardziej strome (32,09°), ale wyższe na zboczu kontynentalnym. Profile Rowu Puerto Rico są asymetryczne dla obu boków z powodu uskoków i ruchów tektonicznych płyty karaibskiej i płyty północnoamerykańskiej. Dno morskie Rowu Kajmańskiego jest płaskie w tym segmencie (80,0°W i 17,70°N do 78,5°W i 19,50°N). Jego profil jest asymetryczny: północna część jest stroma (57°), a południowa jest bardziej łagodna (16°). Bardzo duże ujemne anomalie grawitacyjne Faye’a na wolnym powietrzu (do –380 mGal) widoczne są w Rowie Puerto Rico, na południe od Kuby oraz w północno-wschodniej części Rowu Kajmańskiego. Subdukcja płyt tektonicznych w Małych Antylach, Ameryce Środkowej i na dnie morskim, obejmująca nieckę kajmańską, koreluje ze zmianami falowania geoidy wywołanymi właściwościami skał powodujących anomalie grawitacyjne. Analiza warunków topograficznych na przekroju podłużnym ujawnia różnice dla Rowu i niecki. W przeciwieństwie do Rowu Puerto Rico z wyraźnym pikiem gęstości (680 próbek dla głębokości od –5200 do –5400 m), Rów Kajmański ma bimodalny rozkład danych: dwa szczyty odpowiadają dwóm interwałom: 1) od –3250 m do –1000 m; 2) od –5250 m do –3500 m. Wnioski zawarte w artykule mogą przyczynić się do badań geologicznych Morza Karaibskiego z technicznym zastosowaniem GMT do modelowania geomorfologicznego.


Słowa kluczowe


globalny model geopotencjału; anomalie grawitacyjne; GMT; Rów Kajmański; Rów Puerto Rico; Morze Karaibskie

Pełny tekst:

PDF (English)

Bibliografia


Aggarwal Y. 1983. Present-day boundary and the motion of the Caribbean Plate relative to South America. 10th Caribbean Geological Conference. Cartagena, Colombia, p. 16.

Alaniz-Álvarez S.A., Nieto-Samaniego A.F., Morán-Zenteno D.J., Alba-Aldave L. 2002. Rhyolitic volcanism in extension zone associated with strike-slip tectonics in the Taxco region, southern Mexico. Journal of Volcanology and Geothermal Research 2483, 1–14. https://doi.org/10.1016/S0377-0273(02)00247-0

Bandy, O.L. 1970. Upper Cretaceous-Cenozoic paleobathymetric cycles, eastern Panamá and northern Colombia. Gulf Coast Association of Geological Societies Transactions 20, 181–193.

Beets D.J., Maresch W.V., Klaver G.Th., Mottana A., Bocchio R., Beunk F.F., Monen H.P. 1984. Magnetic rock series and high-pressure metamorphism as constraints on the tectonic history of the southern Caribbean. In: W.E. Bonini, R.B. Hargraves, R. Shagam (eds.), The Caribbean-South American Plate Boundary and Regional Tectonics (pp. 95–130). Geological Society of America Memoir 162.

Belderson R.H., Kenyon N.H., Stride A.H., Stubbs A.R. 1972. Sonographs of the sea fl oor. A picture atlas. Amsterdam: Elsevier. https://doi.org/10.1017/S0016756800038607

van Benthem S., Govers R., Spakman W., Wortel R. 2013. Tectonic evolution and mantle structure of the Caribbean. Journal of Geophysical Research: Solid Earth 118, 3019–3036. https://doi.org/10.1002/jgrb.50235

Bracey D.R., Vogt P.R. 1970. Plate tectonics in the Hispaniola area. Geological Society of America Bulletin 81, 2855–2860.

Brodholt J., Stein S. 1988. Rheological controls of Wadati–Benioff zone seismicity. Geophysical Research Letters 15(10), 1081–1084. https://doi.org/10.1029/gl015i010p01081

Burke K., Cooper C., Dewey J.F., Mann P., Pindell J.L. 1984. Caribbean tectonics and relative plate motions. Geological Society of America Memoir 162, 31–63.

Calais E., Mercier de Lepinay B. 1991. From transtension to transpression along the northern Caribbean plate boundary off Cuba: Implications for the recent motion of the Caribbean plate. Tectonophysics 186(3–4), 329–350. https://doi.org/10.1016/0040-1951(91)90367-2

Calais E., Béthoux N., Mercier de Lépinay B. 1992. From transcurrent faulting to frontal subduction: A seismotectonic study of the northern Caribbean plate boundary from Cuba to Puerto Rico. Tectonics 11, 114–123. https://doi.org/10.1029/91TC02364

Calais E., Symithe S., Mercier de Lépinay B., Prépetit C. 2016. Plate boundary segmentation in the northeastern Caribbean from geodetic measurements and Neogene geological observations. Comptes Rendus Geoscience 348, 42–51. https://doi.org/10.1016/j.crte.2015.10.007

Caribbean Sea Ecosystem Assessment Team. 2007. Caribbean Sea Ecosystem Assessment (CARSEA).

Carr M.J., Stoiber R.E. 1990. Volcanism. In: G. Dengo, J.E. Case (eds.), The Geology of North America. Vol. H: The Caribbean Region (pp. 365–392). Boulder: Geological Society of America. https://doi.org/10.1130/DNAG-GNA-H

Case J.E., Durán L.G., Alfonso López R.A., Moore W.R. 1971. Tectonic investigations in western Colombia and eastern Panama. Geological Society of America Bulletin 82, 2685–2712.

Case J.E., MacDonald W.J. 1973. Regional gravity anomalies and crustal structure in northern Colombia. Geological Society of America Bulletin 84, 2905–2916. https://doi.org/10.1130/0016-7606(1973)84<2905:RGAACS>2.0.CO;2

Case J.E., Dengo G. 1982. The Caribbean region. In: A.R. Palmer (ed.), Perspectives in Regional Geological Synthesis: Planning for the Geology of North America (pp. 163–170). Geological Society of America. DNAG Special Publication, Vol. 1. https://doi.org/10.1130/DNAGGNA-H

Case J.E., Holcombe T.L., Martin R.G. 1984. Map of geologic provinces in the Caribbean region. Geological Society of America Memoir 162, 1–30.

Case J.E., MacDonald W.D., Fox P.J. 1990. Caribbean crustal provinces: Seismic and gravity evidence. In: G. Dengo, J.E. Case (eds.), The Geology of North America. Vol. H: The Caribbean Region (pp. 15–36). Boulder: Geological Society of America. https://doi.org/10.1130/DNAG-GNA-H

Clay C.S., Ess J., Weisman I. 1964. Lateral echo sounding of the ocean bottom on the continental rise. Journal of Geophysical Research 69, 3823–3835. https://doi.org/10.1029/JZ069i018p03823

Collina-Girard J. 2002. Underwater mapping of late quaternary submerged shorelines in the Western Mediterranean Sea and the Caribbean Sea. Quaternary International 92, 63–72. https://doi.org/10.1016/S1040-6182(01)00115-X

Couch R., Woodcock S. 1981. Gravity and structure of the continental margins of southwestern Mexico and northwestern Guatemala. Journal of Geophysical Research 86, 1829–1840. https://doi.org/10.1029/JB086iB03p01829

DeMets C., Jansma P.E., Mattioli G.S., Dixon T.H., Farina F., Bilham R., Calais E., Mann P. 2000. GPS geodetic constraints on Caribbean-North America plate motion. Geophysical Research Letters 27(3), 437–440. https://doi.org/10.1029/1999GL005436

Draper G., Jackson T.A., Donovan S.K. 1994. Geologic Provinces of the Caribbean Region. Chapter 1: Caribbean Geology: An Introduction (p. 3). Kingston: U.W.I. Publishers’ Association.

Edgar N.T., Dillon W.P., Jacobs C., Parsons L.M., Scanlon K.M., Holcombe T.L. 1990. Structure and spreading history of the central Cayman Trough. In: D.K. Larue, G. Draper (eds.), Transactions of the 12th Caribbean Geological Conference (pp. 33–42). St. Croix, U.S.V.L., 7–11 August 1989.

EEZ-Scan 85 Scientific Staff. 1987. Atlas of the U.S. Exclusive Economic Zone, Gulf of Mexico and Eastern Caribbean Areas. U.S. Geological Survey Miscellaneous Investigations I-1864-A.

Gauger S., Kuhn G., Gohl K., Feigl T., Lemenkova P., Hillenbrand C. 2007. Swath-bathymetric mapping. Reports on Polar and Marine Research 557, 38–45.

GDAL/OGR contributors (2020). GDAL/OGR Geospatial Data Abstraction software Library. Open Source Geospatial Foundation. Online: https://www.gdal.org (access: 4.07.2020).

GEBCO Compilation Group 2020. GEBCO 2020 Grid. https://doi.org/10.5285/a29c5465-b138-234d-e053-6c86abc040b9

Gómez G. 1996. Causa de la fertilidad marina en el nororiente de Venezuela. Interciencia 21(3), 140–146.

Granja Bruña J.L., ten Brink U.S., Carbó-Gorosabel A., Muñoz-Martín A., Gómez Ballesteros M. 2009. Morphotectonics of the Central Muertos thrust belt and Muertos Trough (Northeastern Caribbean). Marine Geology 263(1), 7–33. https://doi.org/10.1016/j.margeo.2009.03.010

Harris P.T., Macmillan-Lawler M. 2017. Origin and geomorphic characteristics of ocean basins. In: A. Micallef, S. Krastel, A. Savini (eds.), Submarine Geomorphology. Geology. Cham: Springer. https://doi.org/10.1007/978-3-319-57852-1_8

Hayes J.A., Larue D.K., Joyce J., Schellekens J.H. 1986. Puerto Rico: Reconnaissance study of the maturation and source rock potential of an oceanic arc involved in a collision. Marine and Petroleum Geology 3(2), 126–138. https://doi.org/10.1016/0264-8172(86)90024-3

Heezen B.C., Tharp M. 1961. Physiographic Diagram of the South Atlantic, the Caribbean, the Scotia Sea, and the Eastern Margin of the South Pacific Ocean. Geological Society of America.

Holcombe T.L., Ladd J.W., Westbrook G., Edgar N.T., Bowland C.L. 1990. Caribbean marine geology: Ridges and basins of the plate interior. In: G. Dengo, J.E. Case (eds.), The Geology of North America. Vol. H: The Caribbean Region (pp. 231–260). Boulder: Geological Society of America. https://doi.org/10.1130/DNAG-GNA-H

Jamieson A.J., Stewart H.A., Nargeolet P.-H. 2020. Exploration of the Puerto Rico Trench in the mid-twentieth century: Today’s signi fi cance and relevance. Endeavour 44(1–2). https://doi.org/10.1016/j.endeavour.2020.100719

Jolly W.T, Lidiak E.G., Dickin A.P. 2008. Bimodal volcanism in northeast Puerto Rico and the Virgin Islands (Greater Antilles Island Arc): Genetic links with Cretaceous subduction of the mid-Atlantic ridge Caribbean spur. Lithos 103(3–4), 393–414. https://doi.org/10.1016/j.lithos.2007.10.008

Keppie J.D., Morán-Zenteno D.J. 2012. An alternative Pangea reconstruction for Middle America with the Chortis Block in the Gulf of Mexico: Tectonic implications. International Geology Review 54(14), 1685–1696. https://doi.org/10.1080/00206814.2012.676361

Klaucke I., Masson D.G., Petersen C.J., Weinrebe W., Ranero C.R. 2008. Multifrequency geoacoustic imaging of fluid escape structures offshore Costa Rica: Implications for the quantification of seep processes. Geochemistry, Geophysics, Geosystems 9(4). https://doi.org/10.1029/2007gc001708

Klaučo M., Gregorová B., Stankov U., Marković V., Lemenkova P. 2013a. Determination of ecological signi fi cance based on geostatistical assessment: A case study from the Slovak Natura 2000 protected area. Central European Journal of Geosciences 5(1), 28–42. https://doi.org/10.2478/s13533-012-0120-0

Klaučo M., Gregorová B., Stankov U., Marković V., Lemenkova P. 2013b. Interpretation of landscape values, typology and quality using methods of spatial metrics for ecological planning. 54th International Conference Environmental & Climate Technologies. Riga, Latvia. https://doi.org/10.13140/RG.2.2.23026.96963

Klaučo M., Gregorová B., Stankov U., Marković V., Lemenkova P. 2014. Landscape metrics as indicator for ecological significance: Assessment of Sitno Natura 2000 sites, Slovakia. Ecology and Environmental Protection. Proceedings of the International Conference (pp. 85–90). March 19–20, 2014. Minsk, Belarus. https://doi.org/10.6084/m9. fi gshare.7434200

Klaučo M., Gregorová B., Stankov U., Marković V., Lemenkova P. 2017. Land planning as a support for sustainable development based on tourism: A case study of Slovak Rural Region. Environmental Engineering and Management Journal 2(16), 449–458. https://doi.org/10.30638/eemj.2017.045

Kuhn G., Hass C., Kober M., Petitat M., Feigl T., Hillenbrand C.D., Kruger S., Forwick M., Gauger S., Lemenkova P. 2006. The response of quaternary climatic cycles in the South-East Pacific: development of the opal belt and dynamics behavior of the West Antarctic ice sheet. In: K. Gohl (ed.), Expedition programme No. 75 ANT XXIII/4, AWI Helmholtz Centre for Polar and Marine Research. https://doi.org/10.13140/RG.2.2.11468.87687

Ladd J.W., Holcombe T.L., Westbrooke G.K., Edgar N.T. 1990. Caribbean marine geology: Active margins of the plate boundary. In: G. Dengo, J.E. Case (eds.), The Geology of North America. Vol. H: The Caribbean Region (pp. 261–290). Boulder: Geological Society of America.

Langlois A., Phipps M. 1997. Automates cellulaires. Application à la simulation urbaine. Paris: Hermès.

Lemenkova P. 2011. Seagrass Mapping and Monitoring Along the Coasts of Crete, Greece. M.Sc. Thesis. Netherlands: University of Twente. https://doi.org/10.13140/RG.2.2.16945.22881

Lemenkova P., Promper C., Glade T. 2012. Economic assessment of landslide risk for the Waidhofen a.d. Ybbs Region, Alpine Foreland, Lower Austria. In: E. Eberhardt, C. Froese, A.K. Turner, S. Leroueil (eds.), Protecting Society through Improved Understanding. 11th International

Symposium on Landslides & the 2nd North American Symposium on Landslides & Engineered Slopes (NASL) (pp. 279–285). June 2–8, 2012. Banff, Canada. https://doi.org/10.6084/m9. fi gshare.7434230

Lemenkova P. 2018. R scripting libraries for comparative analysis of the correlation methods to identify factors affecting Mariana Trench formation. Journal of Marine Technology and Environment 2, 35–42. https://doi.org/10.6084/m9. fi gshare.7434167

Lemenkova P. 2019a. Geomorphological modelling and mapping of the Peru-Chile Trench by GMT. Polish Cartographical Review 51(4), 181–194. https://doi.org/10.2478/pcr-2019-0015

Lemenkova P. 2019b. Topographic surface modelling using raster grid datasets by GMT: Example of the Kuril-Kamchatka Trench, Pacific Ocean. Reports on Geodesy and Geoinformatics 108, 9–22. https://doi.org/10.2478/rgg-2019-0008

Lemenkova P. 2019c. GMT based comparative analysis and geomorphological mapping of the Kermadec and Tonga Trenches, Southwest Pacific Ocean. Geographia Technica 14(2), 39–48. https://doi.org/10.21163/GT_2019.142.04

Lemenkova P. 2019d. Automatic data processing for visualising Yap and Palau Trenches by generic mapping tools. Cartographic Letters 27(2), 72–89. https://doi.org/10.6084/m9. fi gshare.11544048

Lemenkova P. 2019e. Statistical analysis of the Mariana Trench geomorphology using R programming language. Geodesy and Cartography 45(2), 57–84. https://doi.org/10.3846/gac.2019.3785

Lemenkova P. 2019f. AWK and GNU octave programming languages integrated with generic mapping tools for geomorphological analysis. GeoScience Engineering 65(4), 1–22. https://doi.org/10.35180/gse-2019-0020

Lemenkova P. 2019g. Geophysical Modelling of the Middle America Trench using GMT. Annals of Valahia University of Targoviste. Geographical Series 19(2), 73–94. https://doi.org/10.6084/m9. fi gshare.12005148

Lemenkova P. 2020a. Variations in the bathymetry and bottom morphology of the Izu-Bonin Trench modelled by GMT. Bulletin of Geography. Physical Geography Series 18(1), 41–60. https://doi.org/10.2478/bgeo-2020-0004

Lemenkova P. 2020b. GMT based comparative geomorphological analysis of the Vityaz and Vanuatu Trenches, Fiji Basin. Geodetski List 74(97), 19–39. https://doi.org/10.6084/m9.figshare.12249773

Lemoine F.G., Kenyon S.C., Factor J.K., Trimmer R.G., Pavlis N.K., Chinn D.S., Cox C.M., Klosko S.M., Luthcke S.B., Torrence M.H., Wang Y.M., Williamson R.G., Pavlis E.C., Rapp R.H., Olson T.R. 1998. The Development of the Joint NASA GSFC and NIMA Geopotential Model EGM96. NASA Goddard Space Flight Center, Greenbelt, Maryland, 20771 USA. Online: https://cddis.nasa.gov/926/egm96/nasatm.html (access: 11.11.2020).

Lindh P. 2004. Compaction and strength properties of stabilised and unstabilised fine-grained tills. PhD Thesis. Lund: Lund University. https://doi.org/10.13140/RG.2.1.1313.6481

Meschede M., Frisch W. 2002. The evolution of the Caribbean Plate and its relation to global plate motion vectors: Geometric constraints for an Inter-American origin. In: T.A. Jackson (ed.), Caribbean Geology into the Third Millennium. Transactions of the 15th Caribbean Geological Conference (pp. 1–14). Kingston: University of West Indies Press.

Micallef A., Krastel S., Savini A. 2018. Submarine Geomorphology. Springer Geology. Switzerland: Springer International Publishing AG. https://doi.org/10.1007/978-3-319-57852-1

Patriat M., Pichot T., Westbrook G.K., Umber M., Deville E., Benard F., Roest W.R., Loubrieu B. 2011. Evidence for quaternary convergence across the North America-South America plate boundary zone, east of the Lesser Antilles. Geology 39(10), 979–982. https://doi.org/10.1130/G32474.1

Pavlis N.K., Holmes S.A., Kenyon S.C., Factor J.K. 2012. The development and evaluation of the Earth Gravitational Model 2008 (EGM2008). Journal of Geophysical Research 117, B04406. https://doi.org/10.1029/2011JB008916

Perfit M.R., Heezen B.C. 1978. The geology and evolution of the Cayman Trench. Geological Society of America Bulletin 89, 1155–1174. https://doi.org/10.1130/0016-7606(1978)89<1155:TGAEOT>2.0.CO;2

Perfit M.R., Heezen B.C., Rawson M., Donnelly T.W. 1980. Chemistry, origin and tectonic significance of metamorphic rocks from the Puerto Rico Trench. Marine Geology 34(3–4), 125–156. https://doi.org/10.1016/0025-3227(80)90069-9

Pindell J.L., Barrett S.F. 1990. Geological evolution of the Caribbean region: A plate-tectonic perspective. In: G. Dengo, J.E. Case (eds.), The Geology of North America. Vol. H: The Caribbean Region (pp. 405–432). Geological Society of America. https://doi.org/10.1130/DNAGGNA-H.405

Pinet P.R. 1976. Morphology off northern Honduras, northwestern Caribbean Sea. Deep Sea Research and Oceanographic Abstracts 23(9), 839–847. https://doi.org/10.1016/0011-7471(76)90851-2

Protti M., Gündel F., McNally K. 1994. The geometry of the Wadati–Benioff zone under southern Central America and its tectonic significance: Results from a high-resolution local seismographic network. Physics of the Earth and Planetary Interiors 84(1–4), 271–287. https://doi.org/10.1016/0031-9201(94)90046-9

Roobol M.J., Wright J.V., Smith A.L. 1983. Calderas or gravity-slide structures in the Lesser Antilles island arc? Journal of Volcanology and Geothermal Research 19(1–2), 121–134. https://doi.org/10.1016/0377-0273(83)90128-2

Rosencrantz E., Sclater J.G. 1986. Depth and age in the Cayman Trough. Earth and Planetary Science Letters 79, 133–144. https://doi.org/10.1016/0012-821X(86)90046-4

Rosencrantz E., Ross M.I., Sclater J.G. 1988. The age and spreading history of the Cayman Trough as determined from depth, heat flow, and magnetic anomalies. Journal of Geophysical Research 93, 2141–2157. https://doi.org/10.1029/JB093iB03p02141

Rosencrantz M., Mann P. 1991. SeaMARC II mapping of transform faults in the Cayman Trough, Caribbean Sea. Geology 19(7), 690–691. https://doi.org/10.1130/0091-7613(1991)019<0690:SIMOTF>2.3.CO;2

Rousseeuw P.J. 1984. Least Median of Squares Regression. Journal of the American Statistical Association 79(388), 871–880. https://doi.org/10.1080/01621459.1984.10477105

Sanders L. 1989. L’analyse statistique des données en géographie. Montpellier: Alidade Reclus.

Sandwell D.T., Smith W.H.F. 1997. Marine gravity anomaly from Geosat and ERS 1 satellite altimetry. Journal of Geophysical Research 102, 10039–10054. https://doi.org/10.1029/96JB03223

Sandwell D.T., Müller R.D., Smith W.H.F., Garcia E., Francis R. 2014. New global marine gravity model from CryoSat-2 and Jason-1 reveals buried tectonic structure. Science 346(6205), 65–67. https://doi.org/10.1126/science.1258213

Schell B.A., Tarr A.C. 1978. Plate tectonics of the northeastern Caribbean. Geologie en Mijnbouw 57, 319–24.

Schenke H.W., Lemenkova P. 2008. Zur Frage der Meeresboden-Kartographie: Die Nutzung von AutoTrace Digitizer für die Vektorisierung der Bathymetrischen Daten in der Petschora-See. Hydrographische Nachrichten 81, 16–21. https://doi.org/10.6084/m9. fi gshare.7435538

Schmidt W.E., Siegel E. 2011. Free descent and on bottom ADCM measurements in the Puerto Rico Trench, 19.77°N, 67.40°W. Deep Sea Research Part I: Oceanographic Research Papers 58(9), 970–977. https://doi.org/10.1016/j.dsr.2011.06.005

Sclater J.G., Hellinger S., Tapscott C. 1977. The paleobathymetry of the Atlantic Ocean from the Jurassic to the Present. The Journal of Geology 85(5), 509–552.

Shepard F.P. 1963. Submarine Geology. New York: Harper & Row 557 p.

Shibata T. 1979. Pigeonite-bearing basalts dredged from the Puerto Rico Trench: A microprobe study. Marine Geology 30(3–4), 285–297. https://doi.org/10.1016/0025-3227(79)90020-3

Smith W.H.F., Sandwell D.T. 1997. Global sea floor topography from satellite altimetry and ship depth soundings. Science 277, 1956–1962. https://doi.org/10.1126/science.277.5334.1956

Straume E.O., Gaina C., Medvedev S., Hochmuth K., Gohl K., Whittaker J.M., Abdul Fattah R., Doornenbal J.C., Hopper J.R. 2019. GlobSed: Updated total sediment thickness in the world’s oceans. Geochemistry, Geophysics, Geosystems 20(4), 1756–1772. https://doi.org/10.1029/2018GC008115

Suetova I.A., Ushakova L.A., Lemenkova P. 2005. Geoinformation mapping of the Barents and Pechora Seas. Geography and Natural Resources 4, 138–142. https://doi.org/10.6084/m9. fi gshare.7435535

ten Brink U. 2005. Vertical motions of the Puerto Rico Trench and Puerto Rico and their cause. Journal of Geophysical Research 110, 1–16. https://doi.org/10.1029/2004JB003459

Thomas I. 2001. Cartographie d’aujourd’hui et de demain: rappels et perspectives. Cybergeo 189, 17. https://doi.org/10.4000/cybergeo.3812

Tobler W.R. 1975. Mathematical map models. International Symposium on Computer-Assisted Cartography, Reston.

Tobler W.R. 1980. Statistical cartography: What is it? Proceedings, Auto-Carto IV, I. Reston.

Tsoulos L., Stefanakis C. 2005. Development of a Cartographic Expert System.

Wessel P., Smith W.H.F. 1991. Free software helps map and display data. Eos Transactions AGU 72(41), 441. https://doi.org/10.1029/90EO00319

Wessel P., Smith W.H F., Scharroo R., Luis J.F., Wobbe F. 2013. Generic mapping tools: Improved version released. Eos Transactions AGU 94(45), 409–410.

Wessel P., Smith W.H.F. 2018. The Generic Mapping Tools. Version 4.5.18 Technical Reference and Cookbook. Computer software manual. USA.

Wessel P., Luis J.F., Uieda L., Scharroo R., Wobbe F., Smith W.H.F., Tian D. 2019. The generic mapping tools version 6. Geochemistry, Geophysics, Geosystems 20, 5556–5564. https://doi.org/10.1029/2019GC008515

Wille P.C. 2005. Sound Images of the Ocean in Research and Monitoring. Heidelberg: Springer. https://doi.org/10.1007/3-540-27910-5

Wright J., Rothery D.A. 1998. The Ocean Basins: Their Structure and Evolution. 2nd ed. Milton Keynes: Elsevier.




DOI: http://dx.doi.org/10.17951/b.2020.75.0.115-141
Data publikacji: 2020-11-10 11:53:37
Data złożenia artykułu: 2020-07-06 19:44:37


Statystyki


Widoczność abstraktów - 987
Pobrania artykułów (od 2020-06-17) - PDF (English) - 301

Wskaźniki



Odwołania zewnętrzne

  • Brak odwołań zewnętrznych


Prawa autorskie (c) 2020 Polina Lemenkova

Creative Commons License
Powyższa praca jest udostępniana na lcencji Creative Commons Attribution 4.0 International License.